外企裁员赔偿:电磁炉维修案例

来源:百度文库 编辑:中财网 时间:2024/04/28 15:25:41

3.3  故障案例

3.3.1 故障现象1 : 放入锅具电磁炉检测不到锅具而不启动,指示灯闪亮,每隔3秒发出“嘟”一声短音(数显型机种显示E1), 连续1分钟后转入待机。

     分    析 : 根椐报警信息,此为CPU判定为加热锅具过小(直经小于10cm)或无锅放入或锅具材质不符而不加热,并作出相应报知。根据电路原理,电磁炉启动时, CPU先从第10脚输出试探PWM信号电压,该信号经过PWM脉宽调控电路转换为控制振荡脉宽输出的电压加至G点,振荡电路输出的试探信号电压再加至IGBT推动电路,通过该电路将试探信号电压转换为足己推动IGBT工作的试探信号电压,另主回路产生试探工作电流,当主回路有试探工作电流流过互感器CT1初级时,CT1次级随即产生反影试探工作电流大小的电压,该电压通过整流滤波后送至CPU第5脚,CPU通过监测该电压,再与VAC电压、VCE电压比较,判别是否己放入适合的锅具。从上述过程来看,要产生足够的反馈信号电压另CPU判定己放入适合的锅具而进入正常加热状态,关键条件有三个 : 一是加入IGBT G极的试探信号必须足够,通过测试IGBTG极的试探电压可判断试探信号是否足够(正常为间隔出现1~2.5V),而影响该信号电压的电路有PWM脉宽调控电路、振荡电路、IGBT推动电路。二是互感器CT须流过足够的试探工作电流,一般可通测试IGBT是否正常可简单判定主回路是否正常,在主回路正常及加至IGBT G极的试探信号正常前提下,影响流过互感器CT1试探工作电流的因素有工作电压和锅具。三是到达CPU第5脚的电压必须足够,影响该电压的因素是流过互感器CT1的试探工作电流及电流检测电路。以下是有关这种故障的案例:

(1)   测+18V电压高于22V,按3.2.2<<主板测试不合格对策>>第(3)项方法检查,结果发现Q2击穿。 结论 : 由于Q2击穿,造成+18V电压升高,另U2D正输入端V9电压升高,导至加到U2D负输入端的试探电压无法令IC2D比较器翻转,结果IGBT G极无试探信号电压,CPU也就检测不到反馈电压而不发出正常加热指令。

(2)   测IGBT G极没有试探电压,再测V7点也没有试探电压, 再测G点试探电压正常,证明PWM脉宽调控电路正常, 再测DW3正极电压为0V(启动时CPU应为高电平),结果发现CPU第17脚对地短路,更换CPU后恢复正常。结论 : 由于CPU第17脚对地短路,造成加至U2C负输入端的试探电压通过LM339被拉低, 结果IGBTG极无试探信号电压,CPU也就检测不到反馈电压而不发出正常加热指令。

(3)   测IGBT G极试探电压偏低(推动电路正常时间隔输出1~2.5V), 按3.2.2<<主板测试不合格对策>>第(15)项方法检查,结果发现C29漏电。结论 : 由于C29漏电,造成加至振荡电路的控制电压偏低,结果IGBTG极上的平均电压偏低,CPU因检测到的反馈电压不足而不发出正常加热指令。

(4)   按3.2.1<<主板检测表>>测试一切正常, 再按3.2.2<<主板测试不合格对策>>第(17) 项方法检查,结果发现互感器CT1次级开路。结论 : 由于互感器CT1次级开路,所以没有反馈电压加至电流检测电路, CPU因检测到的反馈电压不足而不发出正常加热指令。

(5)   按3.2.1<<主板检测表>>测试一切正常, 再按3.2.2<<主板测试不合格对策>>第(17) 项方法检查,结果发现C11漏电。结论 : 由于C11漏电,造成加至CPU第5脚的反馈电压不足, CPU因检测到的反馈电压不足而不发出正常加热指令。

(6)   按3.2.1<<主板检测表>>测试到第8步骤时发现V3为0V,再按3.2.2<<主板测试不合格对策>>第(8)项方法检查,结果发现R15开路。结论 : 由于R15开路, 另U2A比较器因输入两端电压反向(V4>V3),输出OFF,加至振荡电路的试探电压因U2A比较器输出OFF而为0,振荡电路也就没有输出, CPU也就检测不到反馈电压而不发出正常加热指令。

3.3.2  故障现象2 : 按启动指示灯指示正常,但不加热。

分     析 : 一般情况下,CPU检测不到反馈信号电压会自动发出报知信号,但当反馈信号电压处于足够与不足够之间的临界状态时,CPU发出的指令将会在试探→正常加热→试探循环动作,产生启动后指示灯指示正常, 但不加热的故障。原因为电流反馈信号电压不足(处于可启动的临界状态)。

处理 方法 : 参考3.3.1 <<故障现象1>>第(4)、(6)案例检查。

3.3.3  故障现象3 : 开机电磁炉发出两长三短的“嘟”声((数显型机种显示E2),响两次后电磁炉转入待机。

分     析 : 此现象为CPU检测到电压过低信息,如果此时输入电压正常,则为VAC检测电路故障。

处理 方法 :检查R39、R40、C32、C33。

 

3.3.4  故障现象4 : 插入电源电磁炉发出两长四短的“嘟”声(数显型机种显示E3)。

分     析 : 此现象为CPU检测到电压过高信息,如果此时输入电压正常,则为VAC检测电路故障。

处理 方法 :检查R38。

3.3.5  故障现象5 : 插入电源电磁炉连续发出响2秒停2秒的“嘟”声,指示灯不亮。

分     析 : 此现象为CPU检测到电源波形异常信息,故障在过零检测电路。

处理 方法 : 检查零检测电路R38、R39、R40、C32、C33、D16均正常,根据原理分析,提供给过零检测电路的脉动电压是由D17、D18和整流桥BG1内部交流两输入端对地的两个二极管组成桥式整流电路产生,如果BG1内部的两个二极管其中一个顺向压降过低,将会造成电源频率一周期内产生的两个过零电压其中一个并未达到0V(电压比正常稍高),CPU6脚在该过零点时间因电压未能消失而不能停止,CPU6在此时仍为低电平,从而造成了电源每一频率周期CPU检测的过零信号缺少了一个。基于以上分析,先将R38换入2.7K电阻(目的将R38上的分压电压降低,以抵消比正常稍高的过零点脉动电压),结果电磁炉恢复正常。虽然将R38换成2.7K电阻电磁炉恢复正常,但维修时不能简单将电阻改6.8K能彻底解决问题,因为产生本故障说明整流桥BG1特性已变,快将损坏,所己必须将R38换回6.8K电阻并更换整流桥DB。

 

3.3.6  故障现象6 : 插入电源电磁炉每隔3秒发出报警声(数显型机种显示E6)。

分     析 : 此现象为CPU检测到按装在微晶玻璃板底的锅传感器(负温系数热敏电阻)开路信息,其实CPU是根椐第8脚电压情况判断锅温度及热敏电阻开、短路的,而该点电压是由R4、热敏电阻分压而成。

处理 方法 : 检查R4是否开路、锅传感器有否插入及开路(判断热敏电阻的好坏在没有专业仪器时简单用室温或体温对比<<电阻值---温度分度表>>阻值)。

 

3.3.7  故障现象7 : 插入电源电磁炉每隔3秒发出报警声(数显型机种显示E4)。

分     析 : 此现象为CPU检测到按装在微晶玻璃板底的锅传感器(负温系数热敏电阻)短路信息,其实CPU是根椐第8脚电压情况判断锅温度及热敏电阻开/短路的,而该点电压是由R4、热敏电阻分压而成。

处理 方法 : 检查R4是否开路、锅传感器是否短路(判断热敏电阻的好坏在没有专业仪器时简单用室温或体温对比<<电阻值---温度分度表>>阻值)。

 

3.3.8  故障现象8 : 插入电源电磁炉每隔3秒发出报警声(数显型机种显示E7)。

分     析 : 此现象为CPU检测到安装在散热器的TH传感器(负温系数热敏电阻)开路信息,其实CPU是根椐第8脚电压情况判断散热器温度及TH开/短路的,而该点电压是由R8、热敏电阻分压而成。

处理 方法 : 检查R8是否开路、TH有否开路(判断热敏电阻的好坏在没有专业仪器时简单用室温或体温对比<<电阻值---温度分度表>>阻值)。

 

3.3.9  故障现象9 : 插入电源电磁炉每隔3秒发出报警声(数显型机种显示E6)。

分     析 : 此现象为CPU检测到安装在线圈上的TH传感器(负温系数热敏电阻) 短路信息,其实CPU是根椐第7脚电压情况判断锅具温度及TH开/短路的,而该点电压是由R4、热敏电阻分压而成。

处理 方法 : 检查R4是否开路、TH有否短路(判断热敏电阻的好坏在没有专业仪器时简单用室温或体温对比<<电阻值---温度分度表>>阻值)。

3.3.10 故障现象10 : 电磁炉工作一段时间后停止加热, 间隔3秒发出报警声, 响两次转入待机(数显型机种显示E5)。

分     析 : 此现象为CPU检测到IGBT超温的信息,而造成IGBT超温通常有两种,一种是散热系统,主要是风扇不转或转速低,另一种是送至IGBT G极的脉冲关断速度慢(脉冲的下降沿时间过长),造成IGBT功耗过大而产生高温。

处理 方法 : 先检查风扇运转是否正常,如果不正常则检查Q3、R27、风扇, 如果风扇运转正常,则检查IGBT激励电路,主要是检查R24阻值是否变大、Q1、Q4放大倍数是否过低、DW3漏电流是否过大。

 

3.3.11 故障现象11 : 电磁炉低电压以最高火力档工作时,频繁出现间歇暂停现象。

分     析 : 在低电压使用时,由于电流较高电压使用时大,而且工作频率也较低,如果供电线路容量不足,会产生浪涌电压,假如输入电源电路滤波不良,则吸收不了所产生的浪涌电压,会另浪涌电压监测电路动作,产生上述故障。

处理 方法 : 检查C1容量是否不足,如果1600W以上机种C1装的是1uF,将该电容换上3.3uF/250VAC规格的电容器。

 

3.3.12 故障现象12 : 烧保险管。

分     析 : 电流容量为15A的保险管一般自然烧断的概率极低,通常是通过了较大的电流才烧,所以发现烧保险管故障必须在换入新的保险管后对电源负载作检查。通常大电流的零件损坏会另保险管作保护性溶断,而大电流零件损坏除了零件老化原因外,大部分是因为控制电路不良所引至,特别是IGBT,所以换入新的大电流零件后除了按3.2.1<<主板检测表>>对电路作常规检查外,还需对其它可能损坏该零件的保护电路作彻底检查,IGBT损坏主要有过流击穿和过压击穿,而同步电路、振荡电路、IGBT激励电路、浪涌电压监测电路、VCE检测电路、主回路不良和单片机(CPU)死机等都可能是造成烧机的原因, 以下是有关这种故障的案例:

(1)   换入新的保险管后首先对主回路作检查,发现整流桥BG1、IGBT击穿,更换零件后按3.2.1<<主板检测表>>测试发现+18V偏低, 按3.2.2<<主板测试不合格对策>>第(3) 项方法检查,结果为Q4击穿另+18V偏低, 换入新零件后再按<<主板检测表>>测试至第9步骤时发现V4为0V, 按3.2.2<<主板测试不合格对策>>第(9) 项方法检查,结果原因为R1开路,换入新零件后测试一切正常。结论 : 由于R1开路,造成加到IGBT G极上的开关脉冲前沿与IGBT上产生的VCE脉冲后沿相不同步而另IGBT瞬间过流而击穿, IGBT上产生的高压同时亦另Q1、Q4击穿,由于IGBT击穿电流大增,在保险管未溶断前整流桥BG1也因过流而损坏。

(2)   换入新的保险管后首先对主回路作检查,发现整流桥BG1、IGBT击穿,更换零件后按3.2.1<<主板检测表>>测试发现+18V偏低, 按3.2.2<<主板测试不合格对策>>第(3) 项方法检查,结果为Q1、Q4击穿令+18V偏低, 换入新零件后再按<<主板检测表>>测试至第6步骤时发现Q2基极电压偏低, 按3.2.2<<主板测试不合格对策>>第(6) 项方法检查,结果原因为R26阻值变大,换入新零件后测试一切正常。结论 : 由于R26阻值变大,造成加到Q2基极的VCE取样电压降低,发射极上的电压也随着降低,当VCE升高至设计规定的抑制电压时, CPU实际监测到的VCE取样电压没有达到起控值,CPU不作出抑制动作,结果VCE电压继续上升,最终出穿IGBT。IGBT上产生的高压同时亦另Q1、Q4击穿,由于IGBT击穿电流大增,在保险管未溶断前整流桥DB也因过流而损坏。

(3)   换入新的保险管后首先对主回路作检查,发现整流桥IGBT击穿,更换零件后按3.2.1<<主板检测表>>测试,上电时蜂鸣器没有发出“B”一声,按3.2.2<<主板测试不合格对策>>第(1) 项方法检查,结果为晶振X1不良,更换后一切正常。结论 : 由于晶振X1损坏,导至CPU内程序不能运转, 上电时CPU各端口的状态是不确定的,假如CPU第10、17脚输出为高,会另振荡电路输出一直流另IGBT过流而击穿。本案例的主要原因为晶振X1不良导至CPU死机而损坏IGBT。