开车变道看镜子技巧:STM32的时钟系统分析

来源:百度文库 编辑:中财网 时间:2024/05/09 15:32:26

STM32中,有五个时钟源,为HSI、HSE、LSI、LSE、PLL。

  ①、HSI是高速内部时钟,RC振荡器,频率为8MHz。

  ②、HSE是高速外部时钟,可接石英/陶瓷谐振器,或者接外部时钟源,频率范围为4MHz~16MHz。

  ③、LSI是低速内部时钟,RC振荡器,频率为40kHz。

  ④、LSE是低速外部时钟,接频率为32.768kHz的石英晶体。

  ⑤、PLL为锁相环倍频输出,其时钟输入源可选择为HSI/2、HSE或者HSE/2。倍频可选择为2~16倍,但是其输出频率最大不得超过72MHz。

  其中40kHz的LSI供独立看门狗IWDG使用,另外它还可以被选择为实时时钟RTC的时钟源。另外,实时时钟RTC的时钟源还可以选择LSE,或者是HSE的128分频。RTC的时钟源通过RTCSEL[1:0]来选择。

  STM32中有一个全速功能的USB模块,其串行接口引擎需要一个频率为48MHz的时钟源。该时钟源只能从PLL输出端获取,可以选择为1.5分频或者1分频,也就是,当需要使用USB模块时,PLL必须使能,并且时钟频率配置为48MHz或72MHz。

  另外,STM32还可以选择一个时钟信号输出到MCO脚(PA8)上,可以选择为PLL输出的2分频、HSI、HSE、或者系统时钟。

  系统时钟SYSCLK,它是供STM32中绝大部分部件工作的时钟源。系统时钟可选择为PLL输出、HSI或者HSE。系统时钟最大频率为72MHz,它通过AHB分频器分频后送给各模块使用,AHB分频器可选择1、2、4、8、16、64、128、256、512分频。其中AHB分频器输出的时钟送给5大模块使用:

  ①、送给AHB总线、内核、内存和DMA使用的HCLK时钟。

  ②、通过8分频后送给Cortex的系统定时器时钟。

  ③、直接送给Cortex的空闲运行时钟FCLK。

  ④、送给APB1分频器。APB1分频器可选择1、2、4、8、16分频,其输出一路供APB1外设使用(PCLK1,最大频率36MHz),另一路送给定时器(Timer)2、3、4倍频器使用。该倍频器可选择1或者2倍频,时钟输出供定时器2、3、4使用。

  ⑤、送给APB2分频器。APB2分频器可选择1、2、4、8、16分频,其输出一路供APB2外设使用(PCLK2,最大频率72MHz),另一路送给定时器(Timer)1倍频器使用。该倍频器可选择1或者2倍频,时钟输出供定时器1使用。另外,APB2分频器还有一路输出供ADC分频器使用,分频后送给ADC模块使用。ADC分频器可选择为2、4、6、8分频。

  在以上的时钟输出中,有很多是带使能控制的,例如AHB总线时钟、内核时钟、各种APB1外设、APB2外设等等。当需要使用某模块时,记得一定要先使能对应的时钟。

  需要注意的是定时器的倍频器,当APB的分频为1时,它的倍频值为1,否则它的倍频值就为2。

  连接在APB1(低速外设)上的设备有:电源接口、备份接口、CAN、USB、I2C1、I2C2、UART2、UART3、SPI2、窗口看门狗、Timer2、Timer3、Timer4。注意USB模块虽然需要一个单独的48MHz时钟信号,但它应该不是供USB模块工作的时钟,而只是提供给串行接口引擎(SIE)使用的时钟。USB模块工作的时钟应该是由APB1提供的。

  连接在APB2(高速外设)上的设备有:UART1、SPI1、Timer1、ADC1、ADC2、所有普通IO口(PA~PE)、第二功能IO口。

/*******************************************************************************

* Function Name : RCC_Configuration

* Description    : Configures the different system clocks.

* Input          : None

* Output         : None

* Return         : None

*******************************************************************************/

void RCC_Configuration(void)

{

ErrorStatus HSEStartUpStatus;

/* RCC system reset(for debug purpose) */

// RCC_DeInit();

/* Enable HSE */

RCC_HSEConfig(RCC_HSE_ON);

/* Wait till HSE is ready */

HSEStartUpStatus = RCC_WaitForHSEStartUp();

if(HSEStartUpStatus == SUCCESS)

{

    /* HCLK = SYSCLK */

    RCC_HCLKConfig(RCC_SYSCLK_Div1);

    /* PCLK2 = HCLK */

    RCC_PCLK2Config(RCC_HCLK_Div1);

    /* PCLK1 = HCLK/2 */

    RCC_PCLK1Config(RCC_HCLK_Div2);

    /* ADCCLK = PCLK2/6 */

    RCC_ADCCLKConfig(RCC_PCLK2_Div6);

    /* Flash 2 wait state */

    FLASH_SetLatency(FLASH_Latency_2);

    /* Enable Prefetch Buffer */

    FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable);

    /* PLLCLK = 8MHz * 9 = 72 MHz */

    RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9);//Pll在最后设置

    /* Enable PLL */

    RCC_PLLCmd(ENABLE);

    /* Wait till PLL is ready */

    while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET)

    {

    }

    /* Select PLL as system clock source */

    RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);

    /* Wait till PLL is used as system clock source */

    while(RCC_GetSYSCLKSource() != 0x08)

    {

    }

}

/* Enable GPIOA, GPIOB, GPIOC, GPIOD, GPIOE and AFIO clocks */

RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOB |RCC_APB2Periph_GPIOC

         | RCC_APB2Periph_GPIOD | RCC_APB2Periph_GPIOE | RCC_APB2Periph_AFIO, ENABLE);

/* TIM2 clocks enable */

RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);

/* CAN Periph clock enable */

RCC_APB1PeriphClockCmd(RCC_APB1Periph_CAN, ENABLE);

}

  下图是STM32用户手册中的时钟系统结构图,通过该图可以从总体上掌握STM32的时钟系统。