粗格栅和细格栅的作用:小直径钻头的正确使用

来源:百度文库 编辑:中财网 时间:2024/04/28 12:02:25

小直径钻头的正确使用

 

        直径小于3.175mm的钻头,通常称为微钻。要使微钻在使用中发挥高效率,必须考虑一系列因素:如钻头本身的各项要素、加工参数、孔深、安装的完善性及工件的结构等。要把这些相互影响又对钻削过程十分敏感的因素处理好,需要有科学的创新精神。 Guhring(美国)公司的市场部经理Mark Megal说:“在很多场合,使用微钻你得边琢磨边干。”尽管目前工具制造商已经在微钻的材料和几何参数方面完成了很多开发,不需要每件事都从头试验,但是要把钻削过程中诸多因素都加以很好控制,仍然不是一项简单的工作。

 

微钻的长径比显著加大

 

    众所周知,钻头的长度和直径之比越大,其弯曲倾向增加。减小长径比,可以减小挠曲力,从而避免钻头折断和孔径误差加大。较深的孔要求钻头有较大的长径比。通常孔深超过3倍直径就是“深孔”,而微钻的孔深一般都要超过这个限度。如直径为3.175mm的钻头加工孔深31.75mm的孔,长径比达10:1;而直径为0.508mm的钻头加工孔深25.4mm的孔,其长径比达到50:1。所以,随着钻头直径减小和脆性的增加,挠曲便成为产生很多问题的根源。而控制钻头的脆性,就要在刀具基体的硬度和韧性之间加以权衡。一般说来,高速钢钻头容许有一定的挠度并能承受相应的弯曲力,但是,高速钢具有的这种弹性变形能力和较低的硬度,也使其耐磨性降低,从而限制了刀具的寿命。而硬质合金则具有高刚性和高硬度,所以能使刀具寿命较长、加工精度较高。M.A.Ford制造公司的钻削生产部经理Joe Kueter指出,硬质合金的高耐磨性使其制成微钻后速度达到高速钢的3倍,且寿命也能提高;同时,硬质合金的高刚性有助于正确定位和保持孔的尺寸。然而,硬质合金也不是万能的,刚性高会使其容易崩裂。

 

Guhring公司的现场销售工程师Peter Jones指出,用M35钴高速钢做微型钻头,可以在硬质合金和普通高速钢(M2、M7)之间取得较好的折衷。他说:“切削时在孔中产生热,加上刀具的辗压,使切削刃变钝,并划出沟道,最终导致工具损坏。而较高的含钴量,使M35的抗热性增加,并能较长时间保持刀刃锋利。”

此外,硬质合金钻头需要仔细地安装和使用,精确的同心度特别重要,因为不同心造成的侧向负荷会导致钻头崩裂。三菱金属材料(美国)公司的铣削和钻削部高级生产经理Larry Brenner建议:应尽量在钻头旋转的机床(如加工中心)上使用微钻,他指出,加工中心的主轴能给予钻头正确的中心线定位,而车床上工件的偏心会导致钻头挠曲。因此,假如在车床上使用微钻,则必须把每个影响同心度的因素事先调整好,特别对硬质合金钻头更要注意,因其不能适应弯曲变形。假如在车床上使用微钻,最好把刀具转塔的安装孔重新镗一刀,并且使用可调式镗孔刀夹,以便把钻头和工件的同心度调至最佳状态。Brenner进一步指出,要把刀夹的跳动降至最小限度。为此,应首选热缩性刀夹,其次是液压刀夹。要求刀夹套筒端面处的最大跳动值在0.005~0.0076mm范围内。

 

消除初始定心误差

 

    任何钻头工作时,开始几转至关重要。因为开始切削时,钻头承受偏心力。此外,工件表面的不规则形状会引起横向滑步,导致刀具弯曲、折断,或者至少是增大孔的偏差。

 

对于直径3mm以下的钻头,三菱公司建议先用刚性好的定心钻打一个深度为1~2倍直径的初始孔。定心钻的钻尖顶角应等于或大于最终钻孔的微钻顶角。若定心钻的顶角较小,则随后微钻切入时,两切削刃比顶尖先接触工件,容易引起崩刃。如果不用定心钻,则可采用这样的方法:使微钻开始切入时的进给量远低于随后的正常进给量。例如钻头直径1.613mm,孔深12.7mm,正常进给量规定为0.0508mm/r,开始用0.0127mm/r的进给量推进0.254mm,也可推进到刃带开始接触工件,然后再转为正常进给。这种办法同样可防止钻头滑步。 Brenner指出,微钻使用中的另一挑战是要尽量提高转速,以发挥生产潜力,但就最大转速规范而言,钻头往往走在机床的前面。有的机床在其最高转速下运行,仍未达到微钻的最佳切削速度。例如直径为1mm的钻头,切削速度达到91.44m/min,要求机床主轴转速达到28000r/min。被加工材料的硬度,对于确定微钻切削速度和进给量的初始推荐值有很大影响。例如,M.A.Ford公司推荐:用直径为1.32mm的整体硬质合金钻头加工1018低碳钢(20HRC)时,其切削速度选用91.44m/min,进给量选用0.038mm/r。但是该钻头加工塑料和合成材料时,切削速度可达198.12m/min,进给量达0.127mm/r。加工难加工材料(如镍基合金、钛合金)时,切削速度仅为15.24~18.29m/min,进给量仅为0.0305mm/r。

 

分步钻孔序列

 

    通常,钻削微型深孔采用分步钻孔序列,即周期性退出钻头,以便折断切屑,防止堵塞。分步钻孔也有助于防止在孔底持续挤压,这一点在加工冷作硬化材料时尤为重要。Brenner指出,一般认为分步切削就得把钻头完全退出来,其实不然。若采用中断进给(几转或短时),同样可以断屑。另外,完全退出钻头还易产生喇叭口以及将部分切屑留在孔内,所以不得不对其再切削。这些情况都是不希望出现的。许多问题往往发生在钻孔深度的最后20%这一段内。Brenner指出,这是因为随着孔的逐渐加深、切屑排出十分困难的原因所致。具体的解决办法因工件及材料的状况而异。应用工程师应按具体情况确定分步切削方案。

    谈到加工线路板的微钻,虽然从钻头材质和直径大小来看,同设计用于加工韧性材料的微钻十分相似,但是,两者的切削几何参数却有很大差异。

    M.A.Ford公司的Kueter指出,虽然经过仔细安装调试,线路板钻头也可用于加工较硬的材料,但Ford公司一般不这么做,宁肯精心制备适用于韧性工件材料的专门钻头。一个重要的方向是尽量缩短槽长,以提高钻头的强度。Kueter还特别说明,用户要求钻削25.4mm的深孔,但我们提供的钻头槽长不一定要达到25.4mm,一般提供槽长为9.525mm或12.7mm的钻头即可。Kueter指出,有些线路板钻头制成所谓“阶梯式柄部。”例如,一支直径为0.1524mm的钻头,钻削孔深为1.524mm,槽全长也制成1.524mm,但钻头工作部分直径不直接从槽尾连接到直径3.175mm的柄部,而是通过一个0.762mm中间直径加以过渡。对此Kueter认为,钻削韧性材料时,钻头伸出长度应尽量短,所以加一段过渡直径的结构是不可取的。Kueter还指出,从几何参数的角度来看,线路板钻头通常采用较大的螺旋角,沟槽截面尺寸也较其它微钻薄。而对于加工不锈钢和其它难加工材料的微钻,则采用较小的螺旋角和较厚的沟槽截面尺寸。

    他还指出,为了减小微钻上的应力,制成倒锥——直径向柄部方向减小——是十分必要的。倒锥量一般为0.005~0.127mm。因为钻头槽长常小于25.4mm,所以每25.4mm长度上的倒锥通常为0.0127~0.0254mm。Kueter强调,只要钻孔有深度,就需要倒锥度。特别是对钛合金等加工中出现“回缩”的材料,若没有适当的倒锥度,钻头将被胶结在孔里。Kueter介绍了一家用户为克服钛合金加工时“回缩”现象的独特方法:要求工具厂供应的钻头钻尖处径向跳动处于公差上限,这样在钻孔时扩张量较大,工件“回缩”也不至于抱住钻头。 

 

内冷却效果好

 

    实践证明,采用内冷却钻头对提高深孔加工的生产率十分有效。它的优点不仅在于把切削液直接送到钻尖处,起冷却作用,而且还能发挥强制排屑和帮助断屑的作用。在孔深大于3倍直径时,采用内冷却钻头加工时其效果更为明显,但迄今为止,内冷却钻头往往限于直径3mm以上的钻头。 

        CooL Jet系统公司的全国销售经理Colin ELdon说,正确使用HPC(高压冷却)系统,能极大地提高生产率。他回顾一家用户的实际例子:钻头直径1.397mm,孔深13.335mm,工件材料为302不锈钢。以往采用常规冷却(压力为4个大气压),采用钴高速钢钻头,转速为1600r/min,单件工时42秒,钻头寿命175件。

    后来采用双钻头加工新工艺:首先,采用三菱公司的MZE型整体硬质合金定心钻,无冷却,转速为6000r/min,进给量0.0254mm/r,定心孔深2.54mm。第二步,采用三菱公司MZS型内冷却微钻,转速9000rpm,进给量0.0203mm/r,分步切削步长1.397mm,冷却液压力达102个大气压。两支钻头的单件加工工时合计为16.5秒(节省工时60%),刀具寿命增加到875件。获得如此巨大的好处,代价仅为每个零件刀具费用提高3.3%。三菱公司的Brenner介绍,该公司生产直径1mm至3mm的微钻,冷却压力至少达到68个大气压,随钻头上的两个微小冷却孔尺寸而变。冷却孔最小直径为0.1524mm,用于直径最小的钻头。为了确保充分的冷却液流量,必须保证有足够的压力。对于大尺寸钻头,内冷却孔直径达到1.524mm,在68个大气压下,其冷却液流量达16.4升/分,而在同样压力下,用微钻钻削时的冷却液流量仅为1.89升/分。

    三菱公司还建议:冷却系统应能滤掉尺寸小至5微米的质点;使用的精密过滤套,不论采用内密封还是外密封,应能在68个大气压保持密封。并建议采用水溶性冷却液,带EP类添加剂,如硫、氯等。由于油的粘度为水的8~10倍,所以不宜采用。 M.A.Ford公司最新生产的内冷却微钻系列(最小直径1mm),增加了钻芯增量,这有助于保证钻头强度。内冷却螺旋孔贯穿钻体,位置可贴近槽的前部或背部。该公司专注于开发小螺旋角内冷却钻头,因为它有助于切屑排出孔外。Kueter指出,内冷却钻头应能大大减少分步切削次数,在加工冷作硬化型材料如304或316号不锈钢时尤其重要。

 

小孔带来大挑战

 

      Starro精密产品公司是一家从事瑞士式螺纹加工和其它加工服务的公司。在内冷却微钻的应用方面和M.A.Ford公司有密切合作。该公司的销售和制造副总裁Lee Dwyer指出:“必须懂得,你所选用的冷却液和刀具几何角度能带来什么效果。” Starro公司与众不同之处就是在某些生产工序上公差保持在±0.005mm。Dwyer指出,现有的钻削数据,通常都用于钻头旋转的场合,所以Starro公司不得不自行开发许多适用于螺旋机床和加工中心的微钻应用程序。Dwyer指出:定心是决窍,必须使机床处于良好状态,主轴径向跳动要小于0.0025mm;内冷却微钻的主要优点是可提高刀具寿命和切削速度。与不用冷却液的硬质合金钻头相比,内冷却钻头的刀具寿命提高到3倍,切削速度提高30%,具体随工件材料而异。对于长期应用微钻的场合,对整个切削系统的每一个要素加以优化则显得格外重要。

    Kyocera Tycom公司的工业用微型刀具分公司全国销售经理Tom Krueger指出:对于小批量生产,可使用价格低廉的标准工具。但对于特定产品的大批量生产,生产车间应对整个工序流程进行分析和优化。对于某种特定的工件材料,采用专用的钻头、钻尖几何参数、槽长、螺旋角以及柄部的直径和长度,可以获得最佳的使用效果。若再对使用钻头的机床进行认真分析,将会使生产率进一步提高。Krueger列举一个实例:在一台特殊机床上,用一直径为0.0381mm的钻头加工一种不锈钢医用零件,工件和刀具的转速均为5000rpm,反向旋转。由于接受Kyocera Tycom公司建议,对加工过程进行改进,如调整机床的同心度,结果生产率成倍提高。

 

        实践证明,要想提高生产率,就得花时间、金钱,加上积极工作。例如Starro公司就在设备和生产工艺过程方面进行了投入,并开展一系列微钻应用的研究工作。该公司的销售副总裁Dwyer指出,不花费力气,不会有收获。

 

[ 本帖最后由 lflhome1 于 2008-10-11 07:13 编辑 ]

 

(二.)超硬材料的车削加工

    随着制造业的不断发展,世界机床制造厂家一直在寻求用新技术来降低加工零件和成品的生产成本,使得超硬切削成为当前各制造商关注的新型加工工艺。预期在不久的将来,超硬切削技术将会发展得更加成熟,并被人们广泛使用。

 

超硬车削技术 

        超硬车削被定义为对hrc 45以上高硬材质工件单点切削的加工过程。通常工件材质硬度可达到hrc 58~68的范围,切削刀具材质基本上选用cbn(立方氮化硼)。超硬车削技术为那些不要求超高精密磨削的加工制造提供了一个新的选择。当然,对某些超高精密要求的工件、容易变形的工件和特殊要求的工件,磨削工艺还是比较适合的选择。虽然目前超硬车削还不能完全取代超高精密磨削,但已能取代相当一部分的精密磨削,从而降低了磨削制造过程中昂贵的生产成本。目前,超硬切削的工件表面粗糙度一般可达ra0.2~ra0.4,圆度可达0.0005mm,尺寸精度可控制在0.003mm以内。经过切削比较发现,超硬车削加工工艺比一般磨削加工工艺的生产效率要高4~6倍。 

        在不使用切削液冷却的情况下切削一个hrc 62的坚硬零件,会产生很多的热量。一般超硬切削时,切削点区域内的温度可高达926℃。事实上,局部高温热化可以帮助切削过程的完成,刀具切削点的高热预先对工件的切削层产生退火和软化效应,使得工件比较容易切削。在这一切削过程中,绝大部分的热是由切屑剥离而产生的。为了求得精美的表面加工质量,在最后一道切削时,应尽可能减少切削深度,一般控制在0.25 mm以内。  

        当前超硬车削已被广泛应用在汽车零部件制造中。上海汽车齿轮总厂已非常成功地将这一技术运用于大批量生产当中,他们将3、4、5档结合齿轮渗碳淬火后以车代磨,进行成品的最终精密加工,以达到零件设计的公差和表面粗糙度要求。被加工工件的表面粗糙度可达ra0.2~ra0.4,圆度可达0.0005 mm,0.003 mm的公差带,cpk值可达1.67。

 

连续加工的稳定性 

 

        对超硬材料进行车削的一个重要标志就是保证连续加工的稳定性。这与机床的整体动态刚性、切削刀具、工件的热处理状态有关。采用聚合物(人造大理石)对床身各主要部位进行充填,增加其阻尼系数(一般为铸铁床身的8倍),同时结合使用线性滚动导轨,将会对超硬材料车削过程产生巨大的影响,大大降低因切削引起的振动,加大快速回归静态刚性的时间。测试结果表明,机床的改进有效地抑制了由机床振动带来的刀具崩刃,延长了刀具的使用寿命,大幅度提高了被加工工件的精度,缩小了公差带的离散度,提高了工件表面质量。 

另一项重要影响因素是机床各移动轴整合的性能和精度,包括机床的准确度、几何精度、电控功能、误差补偿以及一般调整和热变形效应。这是因为工件的最后一道加工成果完全是由机床的性能和精度来决定的。 

        通常在粗车时选用陶瓷刀,切削深度大于0.25mm;在精车时选用cbn刀,切削深度小于0.25mm。要使超硬材料的车削取得理想的效果,还需控制被加工件的热处理状态,一般淬火硬度变化要求小于hrc 两个点之间。如果工件是渗碳件,还要保证渗碳层深度的一致性,一般应将深度控制在0.8~1.2mm以内。

 

超硬材料车削的优点  :

 

与磨削工艺相比较,超硬材料的车削具有以下优点: 

1、 在一台车床上既可以进行“软切削”,又可以进行超硬切削,一台机床相当于两台机床使用,既节省了厂房空间,又降低了购买机床的资本投入; 

2、 超硬车削的切削效率是磨削的4~6倍; 

3、 在超硬车削过程中,可利用车刀单点切削的特点加工复杂形状的工件,而磨床只能用成形砂轮进行磨削; 

4、 一次设定可完成多项切削工序,节省了工件的搬运和重新装置的时间,减少工件损伤; 

5、 超硬车削可轻易达到ra0.2~ra0.4的表面粗糙度; 

6、 超硬车削的车床能适应不同规格的工件。尤其在模具行业,可满足不同批量和复杂工件的加工; 

7、 超硬车削的切屑较磨屑容易处理,符合环保要求; 

8、 刀具库存成本较低。 

 

结论 

        超硬车削是一项切实可行的技术,能提供良好的经济效益和较佳的工件品质,特别是在高动态刚性的机床上产生的经济效益更为明显。超硬车削过程和一般车削过程没有太大的区别,绝大部分生产厂家都能引进这一新技术,并应用于实际生产当中。 

展望未来,随着切削工艺和机床性能的不断改进,超硬车削这项新技术将逐步趋于完美,必将得到更加广泛的应用。

 

[ 本帖最后由 prt0683 于 2008-10-10 21:44 编辑 ]

 

(三.)集中润滑系统的设计步骤

润滑油集中润滑系统是目前应用最广泛的润滑系统,包括全损耗与循环润滑方式的节流式、单线式、双线式、多线式及递进式等类型。全损耗润滑方式又称压力强制润滑,是由主机上的传动机构带动附装在主机上的油泵或润滑器施压强制供送润滑油到各润滑点,但使用过的润滑油不再流回油池循环使用。例如活塞式空气压缩机的气缸、蒸汽机车、电动空气锤等都采用这种润滑方式。

      压力循环润滑方式多用于润滑点相对较多的单机器或由若干台机器组成的成套生产线。压力循环润滑系统通常包括油泵及驱动装置(电机)、分配阀、管路及阀门、滤油器、油箱、冷却器及热交换器、控制装置及仪表、指示、报警及监测装置等,一般是标准的成套润滑站。

 

稀油集中润滑系统设计的任务和步骤 

    1)润滑油(稀油)集中润滑系统设计的任务 根据总体设计中机械设备各机构和摩擦副的润滑要求、工况和环境条件,进行集中润滑系统的综合设计以确定合理的润滑系统,包括确定润滑系统的型式、计算及选定组成系统的各种润滑元件及装置的性能、规格、数量,及系统中各管路的尺寸布局等。 

 

    2)设计步骤 集中润滑系统的设计步骤:

    (1)根据润滑系统设计要求、工况和环境条件,考虑必要的参数,确定润滑系统的方案。如几何参数:最高、最低及最远润滑点位置尺寸、润滑点范围、摩擦副有关尺寸等;工况参数:如速度、载荷及温度等;环境条件:温度、湿度、砂尘、水气等;运动性质:连续运动、变速运动、间歇运动、摆动等。力能参数:如传递功率、系统的流量、压力等要求。在此基础上考虑制定系统方案。 

 

    (2)计算各润滑点所需润滑油的总消耗量。根据初步拟定的润滑系统方案,计算出经过润滑后,各摩擦副工作时克服摩擦所消耗的功率和总效率,以便计算出带走处于运转中摩擦副产生的热量所需的油量,再加上形成润滑油膜,达到流体润滑作用所需油量,即为润滑油的总消耗量。     

 

    (3)计算及选择润滑泵。根据系统所消耗的润滑油总量,可确定润滑泵的最大流量Q、工作压力P、润滑泵的类型和相应的电动机。     

 

    ①确定润滑泵的工作压力。      

 

    ②确定润滑泵的排量Q。      

 

    ③润滑泵的有效功率Ne。     

 

    (4)确定定量分配系统。根据各润滑点的耗油量,确定每个摩擦副上安置几个润滑点,选用哪件类型的润滑系统,然后选择相应的润滑泵及定量分配器。其中多线式系统是通过多点或多头式的每个给油口直接向润滑点供油。而单线式、双线式及递进式润滑系统则用定量分配器(或称分油器)供油。      

 

    (5)油箱的设计及选择。      

 

    (6)冷却器和热油器的设计及选择。      

 

    (7)油管直径的选择。      

 

    润滑系统的测量、监测及报警装置

    为了保证润滑系统向各润滑点持续供油以防止因供油不足而损坏,常在系统中配置测量、监测及报警装置。

 

    在润滑系统中常见的故障有油泵失效、供油管路堵塞、轴承过热及磨损甚至咬粘、分流器工作不正常、污染严重、给油循环时间不准确等。润滑系统中通常采用以下测量装置:

    1)测温装置 在油箱、润滑泵、冷却器的进口与出口、重要的轴承等部件入安装测温装置及显示、控制装置如水银温度计、热电偶及接触温度计等,可以及时看到这些部位的温度变化。      

 

    2)压力测量装置 在润滑泵出口处过滤器的进、出口处等部位安装压力计,用以观察压力变化值。必要时还可安装压差报警器,当压差过高时发出报警信号。      

 

    3)油面及流量测量装置 在油箱中装有油标及油面指示器,在管道中安装流量计或流量监控计来观测流量。      

 

    在集中润滑系统的控制系统中一般要考虑到可以调整润滑循环时间和给油时间,以及显示及控制润滑剂供应不足或过量以及润滑泵过载等情况。

 

[ 本帖最后由 prt0683 于 2008-10-10 21:44 编辑 ]

 

(四)提高涂装生产效率的有效办法

 

 

    涂装生产是一项自动化程度较高的生产,一件成品的产生,从上件开始,经过脱油、磷化、清洗、烘干、喷粉、固化等一系列工序,直到下件,是一个系统而连贯的过程,工件在生产线上以一种均匀的速度运行,而且中间不允许出现停顿点,这就是涂装生产线的最基本的生产特点。

正是由于涂装生产具有上述基本特点,使得涂装生产的生产能力对生产线体本身的依赖性比较大。一条涂装生产线自设计方案确定之时,尤其是生产线体的运行链速一旦确定,其最大的生产能力基本上就已经确定。因为,涂装生产的运行链速确定之后,其生产线上各个处理过程的有效处理时间及相关工艺要求范围也必须随之定下来,而此范围的调整余地一般不会太大。

 

    在实际生产当中,经过我们的研究与多次尝试,找到了一些提高涂装生产效率的有效办法,经过实际使用,效果非常明显。

  1、从涂装挂具着手,提高挂具的利用率

  我公司涂装生产所用的挂具可以说经历了以下三条路线的改进:

 

  (1)成套挂具→单件挂具

  最初从日本引进生产线时,全部是照搬日本的那一套,涂装用挂具也是设计成适合于整套生产用的挂具,一套空调外壳一般用一个挂具可以全部挂齐。这种挂具在理想生产组织状态下是非常有效的,但是实际生产当中,工件大多数情况下不可能是成套的备齐,因此挂具上经常是闲置着不少的挂点。为此,我们将成套用的挂具改为单件用的挂具,提高了挂具的有效利用率。

 

  (2)专用挂具→兼用挂具

  由成套挂具改为单件挂具后,虽然提高了挂具的有效利用率,但是随着生产品种的增加,生产过程中频繁更换挂具的问题又很快就暴露了出来,考虑到使用过程的方便,我们经过大量的设计尝试,又将大部分挂具改进为兼用挂具,一个挂具可以通用于几种工件,这样生产过程频繁更换挂具的问题得到了很好地解决。

 

   (3)挂件数量:2→4→6→8或16

  在对挂具进行了上述两种改进的过程中,我们通过对挂具的科学设计,在确保不超过悬点承重的条件下,增加了单个挂具的挂点,从而大幅度提高了挂具的有效利用率,有的甚至是成几倍的增加了利用率,使涂装线体的实际生产能力大大突破了设计生产能力。

  

    通过上述三条线路的挂具改进,大大提高了涂装生产线的生产效率与生产能力,使涂装生产不再是制约我公司生产扩大的瓶颈因素。

 

  2、使用新型涂装前处理药剂

  在实际生产当中,我们还通过积极采用新型的涂装前处理药剂来达到提高生产效率的目的。以前我们使用的是传统型的涂装前处理药剂,脱脂剂与磷化剂的使用温度都要求在50度的温度以上,每班生产之前都需要进行较长时间的升温过程,尤其是在冬天寒冷的天气里,有时很长时间达不到设定温度,影响了生产的正常运行。

  后来我们采用了新型的低温磷化剂与脱脂剂,大大缩短了升温过程。另外,新型磷化剂具有低渣的特点,减少了清理槽体结渣的时间,在方便了生产管理的同时,增加了有效工作时间,从而提高了生产效率。不仅如此,新型涂装前处理药剂由于使用温度较低,大大降低了能耗,节约了生产成本,可以说是一件一举多得的好事情。

 

  3、改进设备,增加备用槽体

  在生产旺季里,涂装生产线也是一天24小时转个不停,由于产量的加大,脱脂槽、预脱脂槽里的槽液往往用不了几天就要进行更换,而更换槽液也要用掉一部分正常生产时间。为了既能保证产品质量,又不耽误正常生产时间,我们对线体进行了改造,在原有的脱脂槽和预脱脂槽旁边各又并联了一个脱脂槽和预脱脂槽。这样,不管什么时间更换槽液,我们都不会影响正常生产时间,只需提前配好另一个槽液即可。这也是一个有效的提高生产效率的办法。

  以上几点,是我们在实际涂装生产中总结出来的一些小经验,但却是行之有效的办法。投入少而收益大,何乐而不为!

 

[ 本帖最后由 prt0683 于 2008-10-10 21:45 编辑 ]