韩寒开的餐厅叫什么:天文常识1001条

来源:百度文库 编辑:中财网 时间:2024/04/27 21:35:31
1 天文学是…研究宇宙中一切物体(除了地球)的自然科学的一个分支。但是,天文学家确实也研究太阳和地球高层大气的作用,包括极光等。

2 大部分天文学家其实是天体物理学家。直到19世纪后期,天文学是很难描述和计算的。天文学家通过望远镜给天体照相并计算一些像日月蚀,行星的位置,恒星的位置和距离。尽管如此,天文学家是缺少对恒星物理性质和主宰它们为什么发光、怎样演化的物理机理的真正了解的。从那以后,我们在原子结构和物质作用知识上的突破使得天文学家通过物理规律的大方面应用而发现了宇宙的内在工作机制。这样,今天的大部分天文学家实际是天体物理学家并在做天体物理。这一头衔可以在鸡尾酒会上给人留下深刻印象。

3 天文学家大体上可以分为观测天文学家和理论天文学家。虽然一些人两方面都做,大部-分人更适合其中之一。尽管观测天文学家不必要整天埋头观测,他们要进行望远镜和仪器(如相机,光度计,光谱仪等)的研究设计来获得和分析宇宙天体的数据。另一方面,理论天文学家典型的是应用超级计算机建立模拟宇宙现象的模型。

4 观测天文学家和理论天文学家的工作经常是互相补充的。有时,观测天文学家会发现宇宙中无法解释的现象而理论天文学家会试着用数学和已知物理规律来解释观察到的东西。还有时,理论天文学家会发展一种理论预示了宇宙中某种现象或某种物理条件存在而观测天文学家会试着通过观察验证这种理论对不对。第一个例子是脉冲星的发现和后来的中子星理论。第二个例子是黑洞存在的理论假设和接着黑洞被真正发现。

5 总体来讲,研究宇宙是一件令人气馁的被动的活动。物理学家、化学家、生物学家有一个共同点:他们可以钻进实验室或到达目的地有效的创造出他们要研究的现象。他们可以接触到它,操作它,直接的和它们联系。问一个物理学家一个物质有多重,他们可以放在秤上称并马上读出来。问一个化学家一个反应放出多少热,他可以用温度计测出来。问一个生物学家一个血样有什么遗传特征,他可以立刻进行一系列小心的检测。对于天文学家来说整个宇宙就是一个实验室。但是,宇宙,用定义说就是“延展在那儿”的远在我们直接接触范围之外的所在。天文学家虽然可以测出一颗恒星离我们的距离,但是他不能用一盒卷尺去测量来验证这个距离。天文学家想知道太阳表面的温度,但是他不能去太阳那儿插一个温度计。天文学家想知道一个遥远星系的组成,但是他不能去那儿采样再运回地球分析。然而我们确实知道恒星的距离,太阳的温度,遥远星系的组成。这就是天文学为什么是一个如此令人着迷的领域,是一件对人类思想创造性灵活性有如此贡献的礼品。

6 天文学家通过收集分析宇宙天体的光和其它波段辐射研究宇宙。天文学家不能去宇宙中大部分的行星,恒星,和星系。取而代之,他们通过天体发送给我们的信息研究宇宙。能够携带信息给我们的就是光和其他波段辐射。这样天文学家主要通过天体辐射,研究宇宙天体(由物质构成)。很快我们就会谈到辐射。你也会在本章末找到关于物质的部分。

7 光学望远镜是一件通过聚光使我们可以看到比我们只用肉眼看到的更弱物体的设备。望远镜的原理本质上是相同的。进入望远镜的光被一系列的透镜、面镜不断聚焦成更细的光柱。因为光和辐射是天文学家研究宇宙的手段,所以越多的辐射被收集,能了解的信息就越多。

8 有两种基本的光学望远镜类型。大部分不是折射望远镜就是反射望远镜。

9 折射望远镜用透镜系统聚光。小的时候大部分人有这样的经验,在晴天我们用放大镜点燃一片树叶或纸。这个实验的原理就是放大镜把表面的光聚焦成一点,使这一点的温度特别高,即光度特别大。一架折射望远镜用透镜组完成同样的事情。在折射望远镜大的一端有两片大小相等但不同类型的镜片。当光通过它们,它们共同工作把光聚焦在望远镜筒另一端。在这一点,不管望远镜指向哪里都会成像。

10 反射望远镜用一面或多面反射镜完成相同的事情。在一架简单的反射望远镜中,遥远光束落在反射镜上。这面反射镜不是平的,它是凹面的。结果就会产生聚焦的效果。一种具体的形状是抛物面,可以使平行光轴的入射光聚焦在同一点。像折射望远镜一样,遥远物体在这一点成像。

11 一种简单的普通的被广大天文爱好者喜爱的反射望远镜是牛顿发明的。这一款今天被称为牛顿式反射望远镜的设计,在镜筒一端用凹抛物面集光聚焦。为了观测者方便,在镜筒里面另一端放置一块平面镜把光反射到镜筒侧面安装目镜的地方。许多天文爱好者都有这种设计的望远镜。

12 口径几到几十厘米的折射望远镜比反射望远镜昂贵。比如,平均15厘米的反射望远镜要几百美元,而15厘米的折射望远镜要几千美元。原因是这种大小下,磨制天文观测使用的反射镜比磨制透镜系统便宜。

13 对于需要便携性的爱好者来说,折射望远镜和牛顿反射式都是笨重的。一个典型的10英寸的牛顿反射式大约6到7英尺长100多磅重,而一个6英寸的折射望远镜就有这样大。很清楚,除非你有固定的场所安装这些设备,否则你要面临运输的困难。

14 另一种被称为施米特—卡塞格林的望远镜设计提供了一个有趣的优点。它是用反射镜和透镜的结合。口径几到几十厘米大小的施米特—卡塞格林式远比牛顿式昂贵但比纯折射的便宜,并且有着当牛顿式性能相近镜筒只有其三分之一长的优点。这样,施米特—卡塞格林式更便携且可以放在一个小的因而便宜的地方。因为它短,在有风的时候晃动的就很少。这是很重要的,因为望远镜的放大作用,即使很小的微风引起的震动在望远镜的像上也会产生很大的晃动。

15 我们看到最暗物体的下限取决于有多少光进入我们的眼睛而被聚焦。我们能看到东西因为光通过瞳孔被眼内的透镜系统聚焦在视网膜上成像,信号再被送到大脑。越多的光进入眼睛,越多的光落到视网膜上,越强的信号被送到大脑,就感到物体越亮。当我们刚进入一个黑屋子或刚从明亮的环境走到户外,我们感觉到什么都看不见。但当眼睛“适应”后,就可以看的更清楚了。适应是指瞳孔逐渐变大允许更多的光通过。尽管如此,还是有一个极限,能看多暗取决于瞳孔最大能变多大。

16 望远镜能让我们看到更暗物体是因为它们让更多的光进入我们的眼睛。即使在最暗的条件下,平均来说,认得瞳孔不能扩张大于8毫米。所以我们只能看到最暗和通过8毫米见方的光通量呈正比亮度。但是望远镜可以使我们欺骗大自然而把更多的光聚焦成适合瞳孔大小的光柱。用你的裸眼去看星空,你只能用瞳孔的8毫米见方集光。用望远镜看星空相当于用250毫米见方的透镜或面镜集光,这样相当于有了直径250毫米的瞳孔。这就怪不得望远镜能让我们看到宇宙中远比用裸眼看的暗的多的东西。理解这一基本原理你就明白能给我们揭示迄今为止都为尽知的宇宙的望远镜的神奇魔力了。我们将要看到,专业天文学家并不用眼睛而是用远比眼睛客观的仪器接受信号。但是位置是一样的。

17 天文学家倾向用主镜的口径称呼一架望远镜。天文学家倾向用“36英寸”或“2.4米”称呼一架望远镜。这样做的时候,他们使用英尺或米作单位指出望远镜主镜的直径。主镜通常被称为物镜。

18望远镜能够给我们看更远更暗天体的能力取决于主镜的面积。虽然天文学家用目镜的直径称呼望远镜,但望远镜聚光的能力正比于目镜的面积而不是起直径。根据圆面积公式,10英尺的望远镜实际上比5英尺的望远镜多聚4倍的光。望远镜聚集光的能力有时被称为聚光能力。但是这和望远镜的放大率没有任何关系。

19 为了放大望远镜中的像,你需要一个目镜。天文爱好者买的望远镜大多带有一组分类的目镜。每一个目镜典型的是一个小的包含透镜系统的圆柱。不同的目镜得到不同的放大率。

20 为了计算出一个特定目镜下一架特定望远镜的放大率,你必须理解焦距。每一个望远镜物镜和目镜有一个所谓的焦距。它其实是一个距离,通常用毫米衡量。(1英寸等于25.4毫米)如果你曾经用放大镜烧过树叶,放大镜镜片和燃烧物之间的距离就是焦距。换句话说,它就是透镜和来自遥远的光(此处是太阳)会聚的点。目镜的焦距通常写在目镜筒的侧面或末端,物镜的焦距经常包含在望远镜的文献里。

21 计算放大率,你要做的只是一个除法。当你在望远镜上插入一个特定的目镜需要计算它的放大率时,你要做的只是用物镜的焦距除以目镜的焦距。例如,一架望远镜物镜焦距是2540毫米,你插入了一个焦距25.4毫米的目镜,它的放大率是100。这样,意味着当你通过这架观测时,你会看到比你用裸眼近100倍或大100倍的物体。

22 理论上,用任一架望远镜可以得到任一放大率。为了得到更大的放大率你要做的只是选用越来越短焦距的目镜。这样,如果25.4毫米焦距的目镜得到100倍放大率,那么一半焦距的目镜,即12.7毫米,再同一望远镜上可以得到200倍的放大率。6.35毫米焦距的目镜可以得到400倍的放大率。理论上你可以一直这样做下去直到百万倍的放大率或者更多。但是这里面有一个问题,那就是……

23 望远镜的有用放大率。必须要记住的是目镜放大的是通过物镜的经聚焦形成的像。所有的目镜要利用这个像来放大因此就有一个限制,即在多少光的总量下能有效的工作。简而言之,目镜接受越多的光,它就可以把像放的越大并仍能在你眼睛的视网膜上产生足够明亮和清晰的像。换而言之,对于特定的望远镜,你把像放到多大仍然可以看到足够清晰明亮的像有一个实际的限制。超出这个限制就会得到不好的结果。随着越来越大的放大率,你确实得到越来越大的像,但它会变的更暗,更模糊。实际上你很难看到细节。所以远比“这架望远镜放大率是多少?”重要的问题是“这架望远镜的最大有用放大率是多少?”

24 一架特定望远镜的有用放大率的值取决于主镜的尺寸大小。虽然一架望远镜有用放大率会取决于很多因素,包括望远镜的光学质量,某个晚上地球大气的稳定程度。为了得到大约的最大有用放大率,你应该找到一架望远镜,以英寸为单位测出其直径再乘以40。因此,30英尺的望远镜在大多数晚上可用的最大放大率大约3*40=120(也写成120X),6英寸的在同一晚上在放大率是6*40=240时可以看到相同清晰明亮的像。因此,尽可能买佩有最大物镜的望远镜是值得的。

25 有时选用较低放大率比选用最大放大率明智。低放大率目镜会得到较小的像,但是像更尖锐更明亮。大多数情况,这会更适于眼睛。并且,对于某些比较大的天体,比如星团,彗星,月亮,宽视场低放大率的目镜能得到更好的图像。

26 双筒望远镜对于简单享受天空的乐趣来说可以算是非常令人满意的工具了。为了坚持“物超所值”的信条,双筒望远镜是我们能满足从望远镜里看天空的可以负担的起的一个选择。尽管双筒不能提供给你一般望远镜可以提供的月球和行星的细节,但是你只是躺下来随便扫过星空,它们已经是非常美妙的了。另外装备了双筒以后,你可以享受很多美妙的时刻,比如顺着银河巡航来找你可以在本书看到的星云和星团,也可以观察双星,月蚀和不期而遇的彗星。

27 双筒上的数字告诉你它的大小和放大率。双筒经常是用两个数字和一个×来描述的,如7×35或10×50。两个数字中的第一个数字表示双筒的放大率,第二个数字用毫米表示双筒主镜的口径。因为25毫米约等于一英寸,一只10×50 的双筒有一个50毫米或两英寸的物镜和10倍的放大率。

28 晚上用一只7×50的双筒是一个很好的选择。很多人感觉7×50的双筒可以比7×35的双筒(经常用在白天观看体育赛事上)提供更强的聚光能力,但是并不比更大放大率的双筒笨重麻烦。可以给我们提供银河壮观景象的更高放大率更大口径的双筒最好是用三角架支撑它们的重量使其稳固。

29 更高质量的折射望远镜和双筒使用镀膜的镜片。这些化学涂层使镜片看起来发蓝,它们减少内部的反射从而使仪器产生完美像质。

30 天文业余爱好者通常可以告诉你他们正在使用的望远镜的放大率,而专业天文学家不是这样思考问题。放大率是专业天文学家一般不在意的问题。那是因为专业天文学家通常从望远镜上拿下目镜,用望远镜上其他光学器件把光聚焦到CCD 上,就像被用作一架照相机或光度计的一部分或一台光谱仪。这样的话,专业天文学家感兴趣的是像的大小,能够看到的细节程度,和能够到达CCD的光波长或颜色。

31 专业天文学家更感兴趣的是望远镜的分辨率而不是放大率。分辨率指的是一架望远镜理论上让你看到细节的优良程度。细节的优良程度可以这样说,你能看到多小的物体,或者说两个物体靠的多近时仍然可以被分辨。望远镜的分辨率是以角秒来衡量的。

32 一架望远镜的理论分辨率很容易计算。一架以角秒衡量的光学望远镜的理论分辨率可以很容易的以13除以这架望远镜的以厘米衡量的主镜的口径来计算。(2.54厘米等于一英寸)这样一架100英寸(254厘米)的望远镜理论分辨率约为0.05角秒。一架200英寸望远镜理论分辨率约为0.025角秒(只有满月直径的1/36000)。换句话说,第二架望远镜可以分辨只有0.025角秒的天空中的两颗星。而100英寸的望远镜只能把它们看成一颗星。尖锐的像是高质量的像,因此天文学家希望得到最好的分辨率。这是另一个天文学家垂涎尽可能大的望远镜口径的原因。

33 你好,某某?请给我一张星图。就像有德克萨斯和阿富汗的地图,也有天空的地图。它们曾经是用手画的,但是现在天文学家主要依靠的是照片或计算机图像。其中一个范围最广的这类照片和图像由加利福尼亚进行的帕洛马天文台巡天和智利欧洲南方天文台进行的南半球巡天联合组成。几百幅图像显示了整个天空暗至20等的恒星。另一个范围广的星图是为哈勃空间望远镜编得导星目录表。它包括了暗至15等的超过一千五百万颗的恒星,只能从大容量的CD-ROM里得到。在观测以前,天文学家可能会扫一眼它需要的目标周围的较显眼的恒星,这样就可以作为他它需要的目标的路标。

34 天文学家用一套类似于地理经纬度的方法定位天空中的物体。就像地球上的物体可以用经度和纬度指明一样,天空中的任何一个物体可以用一套类似的坐标系统指明,在这个系统中赤纬代替了纬度,赤经代替了经度。

35 赤纬以度数衡量。在天球坐标中和地球赤道平行的大圆叫做天赤道。就像纬度一样,如果一个物体位于天赤道以北,就说他有正的赤纬。类似的,在天空中天赤道以南找到的物体有负的赤纬。到北或南的距离用度数角分角秒衡量(和纬度一样)。

36 赤经用时间的单位衡量。赤经坐标在天空中向东衡量。像经度也应该有一个零点。就像零度子午线穿过英国格林威治,天空中的零度子午线是穿过春分点的子午线,一个天体的赤经是地球从这条零度子午线在正南方时起自转到所求天体在正南方时止的时间长度。这样,天体的赤经就以小时、分钟和时间上的秒来衡量。

37 星图一般包括所含宇宙天体的坐标。就像地图一般在边上标出经纬度一样,星图一般在其所描绘的区域标出赤经赤纬。天体的表和目录一般也列出每一个天体的坐标。赤经(right ascension)一般缩写为R.A.;赤纬(declination)一般缩写为Dec.。这样,例如冬季星空中最灿烂的天狼星可以在天空中R.A.6h14m,Dec.-16°35'找到。而夏季星空中最亮的织女星位于R.A.18h34m,Dec.+38°41'。这些坐标就像经纬度能够定为洛杉矶或海上的一条船一样方便精确的定位出天上星星的位置。

38 相对于恒星运动的天体天球坐标不断改变。因为太阳月亮和行星相对于恒星不断运动,它们的赤经赤纬也在不断改变。这样,列出他们的位置的表每晚都需要改变。对于哪些是运动特别大的天体,比如月亮,有时需要列出起每小时的坐标。

39 天文学家为什么需要这样一个坐标系统?他们不能只是把望远镜指向他们想看的地方,就像你使用你的双筒?有很多这个系统必须的原因。首先,很多专业望远镜有上吨重,很难以转动。第二,望远镜通常放在只允许看到一条天空的天文台里,天文学家通常看不到全天情况。第三,天文学家选用的目标星通常太暗了,肉眼没法看到。第四,如果在德国的一个天文学家想告诉在智利的同伙把望远镜只向他们感兴趣的一颗星,他不能只是说,把望远镜指向那儿。这没有任何意义。

40 许多望远镜都是计算机辅助跟踪,指向天文学家想要研究的天体的正确的赤经赤纬。许多专业望远镜甚至一些爱好者的镜子都是计算机控制,自动移动指向正确的天球坐标的。近些年来,一些爱好者装备的计算机甚至事先装载了包括行星以及亮的恒星和其它一些好看的星团星云星系的坐标的软件。只要输入你想要看得天体名称,按一个按钮,望远镜会为你找到它。

41 天文学家不喜欢闪烁的星星。漫天闪烁的星星是一个很浪漫的景象。但讽刺的是,它是天文学家害怕的事情。那是因为当恒星闪烁时表明地球大气状况很糟。只有当地球大气干净稳定时望远镜才能产生天体非常清晰的像。但是有时地球大气极不稳定,表明大气中有无数不断移动的湍流。这时透过大气观察天体就像透过一条干净的急速流动的小溪看底下的东西。小溪底下的物体像是不断的波动,被水的湍流扭曲。同样的,大气湍流也把穿过它的光线折射扭曲了。对于裸眼,这些不稳定的大气是星星不多闪烁。望远镜使问题更复杂了,因为在放大天体像的过程中,它也放大了大气的扰动,是星星的像弥散成一个不断变换大小和形状的光斑。天文学家把大气不稳定的夜晚称为大气的视宁度不好。这样,一架望远镜在某一夜晚的分辨率比起其本身的尺寸跟依赖于大气状况。

42 天文学家通常试图把天文台建造在有更长时间大气视宁度的地方。选择天文台新台址的最大考虑是一个地方大气稳定性或说好的视宁度的持续性。这样的地方通常选在盛行风从比较平坦的地形或海洋上吹来的较高的山峰上。如此平坦的地形产生的空气流动可以保持光滑平行,从而只有尽可能小的垂直运动。这样,比如Kitt峰国家天文台位于较平坦的亚利桑那沙漠上几公里高的山峰上。世界上最好的一些天文台位于像夏威夷的一座名叫莫那克亚的死火山和智利安第斯山脉一系列的山峰上,这些都在于这些地方的向风面是一望无际的海洋。然而尽管在如此理想的地方,一些大望远镜的分辨率很少超过1角秒。

43 为了找到建造天文台的地方,天文学家也在寻找最晴朗的地方。可以理解,天文学家不仅希望找到大气稳定的地方,它们也希望找到最晴朗的地方。这当然意味着每年有尽可能多的无云日。夏威夷的一些地方覆盖着热带雨林,但是在13000英尺以上,莫那克亚的最高峰如此之高,除了偶尔的大雪,它已超出了“气象带”。智利的那些天文台在干燥的沙漠之上,一年也可能见不到一滴雨。

44 另一个选择台址的重要因素是远离污染。这看起来也很明显,但当说到污染,光学天文学家关心的不仅仅是空气中没有那些化合物。他们关心的是另一种形式的其他他人没有想过的污染,光污染。城市里发出的灯光和车灯光射向天空洗去了暗星河银河的光,使得一些天文研究除了在郊区实际上无法进行。向曾经是20世纪天文研究重地的威尔逊山和帕洛马山,已经因为来自洛杉矶和圣地亚哥等大城市的光污染逐渐变得不能用了。甚至Kitt峰也日益受到图森不断膨胀的人口的威胁。天文学家已经搬向更远的像在夏威夷和智利的山峰。

45 大众可以帮助减少光污染。不需要减少晚上街道和高速公路需要的安全照明量,政府和大众可以采取一些简单的不需增加负担的措施而显著的减少它们产生的光污染。仅仅在路灯上加上灯罩和使用不同的光给高速公路照明可以使我们重新拥有不仅是对天文观测至关重要的也是不断减少的自然资源的美丽星空。想要学习大众应该怎样做,请联系:
Dr.David Crawford
Dark Sky Association
3545 Stewart Street
Tucson,Arizona 857161

46 当我们谈到宇宙研究时,我们需要注意更多我们的眼睛可以注意的东西。有时天空看起来非常的晴朗但对于某些天文研究却不能接受。对观测光学这一精确测定天体视亮度的天文分支尤其正确。例如,实际上对裸眼来说不可见的一块非常薄的云,在这样的仪器里产生非常大的波动致使数据报废。

47 能造多大的望远镜有着技术上的限制。望远镜的主镜越大,它成的像越亮越尖锐。那么为什么不简单的用一块巨大的镜子呢?问题就在于造这个镜子的物质有一个承受力的极限。为了使望远镜的透镜或凹面镜能精确的把光聚成一个清晰的像,透镜或凹面镜的镜面必须有精确到几百万分之一英寸的只有光波长的几分之一的镜面形状。现代磨制镜面的工艺可以达到这样的精度,但是镜面重到一定程度以后会在自身的重力下变形。变形量不能达到眼睛看到的程度但是足够把光扭曲到不能精确成像。

48 世界上最大的折射望远镜在威斯康星,最大的反射望远镜在俄罗斯。(截止到2006年,最大的反射望远镜是欧洲北方天文台的GTC望远镜,口径11.5米——空间天文网注)世界上最大折射望远镜主镜口径有1米。它位于威斯康星州芝加哥大学管理的叶克斯天文台。1948年,加利福尼亚帕洛马山上直径5米的反射望远镜落成。几十年内它始终是世界上最大的。直到20世纪70年代,高加索山脉的一座6米的反射望远镜才落成,但是不幸的是它的光学系统始终不是太好。

49 新材料和新技术导致了更大望远镜的出现。20世纪80年代一项令人激动人心的望远镜设计技术的进步是天文学家否认了原来认为的光学望远镜尺寸有限制的想法。这一理念包括把几个单独的镜片合成一个望远镜并使它们单独接收到的光产生一个联合的像。这样的方法使单独镜片的总面积等效于整个它们联合起来的面积。夏威夷莫那克亚山上的凯克望远镜用36块直径1.8米的镜片拼在一起。1990年首次进行测试,1996年放在它旁边的双子镜(凯克2)开始加入。更大的多镜面望远镜设计正在进行中。

50 其它的望远镜设计用激光和计算机征服自然。在一个被称为自适应光学的研究领域,科学家正在调查利用激光不断探测望远镜上空的大气并且把信号传给计算机控制的支持主镜的马达使其精确的改变主镜的形状来抵消大气湍动的变化。如果成功的话,这种望远镜可以达到前所未有的清晰度。

51 另一种望远镜设计技术把几个望远镜的光合成以达到很高的清晰度。在最近的英国剑桥大学的一项实验中,天文学家把来自三面指向同一目标的不同望远镜的光合成产生一幅图像。主要原理是干涉测量法,因为图像是通过计算机分析来自不同望远镜的光的干涉得到的。通过这样的分析计算机能得到大量关于目标物体的信息并且最终产生和使用整个一块面积等同于单独望远镜之间相隔的距离一样的像。在最初的实验中,三架望远镜大约20英尺远,这样就模拟合成了一架有20英尺口径的望远镜。结果是成了一幅等同于让你在600英里以外看到一个许可证书的清晰度的五车二恒星系统的星像图。不久望远镜可以被放得更远来产生更高的分辨率。使用不同的分光仪,美国的一个小组最近得到一个好10倍的结果,分辨了一对只有0.0032角秒的双星——相当于一辆在月球上的汽车看上去的尺寸。

52 其它地方也计划着相似的望远镜阵。从智利澳大利亚到美国都在计划或正在建造其它的光学干涉仪。另外,凯克和凯克II能够也正在准备这样连接起来。随着计算机变得更快,能够处理越来越多的数据,这样的系统在我们进入21世纪无疑会在天文领域扮演一个重要的角色。尽管如此,这样的系统也有它的缺点,就像生活中一样,科学中也没有免费的午餐。第一,这样的系统需要大量的计算机功率。第二,图像的最终完成需要望远镜几天或几个小时的时间。

53 天文学家实际上很少花时间通过他们的望远镜观测。这听起来很奇怪,但却是事实。大型望远镜是一个很昂贵的日用品而眼睛是一部不灵敏不客观的设备。现代天文学家改为坐在天文台里花大量的时间看电脑屏幕。其中典型的是显示天文学家正在研究的行星、恒星、星系或其它物体。但是图像也会经常的是附近的一个不相关的物体。并且图像甚至不是来自主镜而是连在主镜上的小望远镜。利用这个小望远镜和屏幕上对应的像,天文学家使主镜跟踪天空中的物体。在其它的监视器上,它保存从比人眼更可靠的科学仪器上记录下的数据并且分析主镜收集的他正在研究的天体的辐射。

54 有些情况,天文学家甚至不需要去天文台。现代成熟的远程控制技术已经达到了可以让天文学家在晚间天文台只有一个助手帮助打开关闭设备和纠正设备可能产生的错误下,通过从他家或办公室连出的计算机指导望远镜的工作。

55 有些情况下天文学家根本不可能去天文台。当然,天文学家利用哈勃空间望远镜和其它绕转的空间器作为天文台必须完全依靠来自地面的远程控制。(只有航天员偶尔拜访哈勃空间望远镜做做修理或安装新设备,天文学家是不让接近的。)在这种情况下,经过特殊训练的工程师和技师把天文学家想用哪台特殊设备观测那个特殊天体的要求翻译成计算机指令,通过电磁波传送到航天器上。天文学家当时可以在他们正在做观测的台站(只要他们答应不碰任何东西)或者就呆在家里通过邮件或计算机连接收到数据来做后面的分析。

56 在天文学家的工具箱里有特定的基本工具,其中最常见的是照相机。照相术最早被引进天文领域是19世纪中叶。这个进步是令人振奋的,因为,第一次,天文学家可以客观地记录下他们的望远镜指向的物体而不要用他们的手画,这样一个天文学家可能和另一个记录下的显著不同。多年来,对胶片在天文领域应用的主要限制是它对光相对不敏感,别是天文上特别暗的天体。随着时间的推移,胶片提高了灵敏度,并且天文学家从在使用前在炉子上烤干胶片到冷却它发展了一系列技术改进它。虽然一些天文图像是彩色的,但是为了天文研究的目的拍摄的照片大多是黑白的。

57 近年来,一种胶片的电子替代品席卷了天文界。它就是CCD或者说电荷耦合器件。你可以在你家的可携式摄像机中找到。这样的设备是由几万到几十万个很小的被称为像素的在曝光时产生电荷的光敏元组成。通过读出每一个像素中的电荷计算机可以重现原来照射到CCD上的光的分布从而成图在监视器上显示或打印出来。CCD比照相胶片的优点是对光更敏感,胶片只能用一次,CCD可以一次又一次重复使用。另外的,CCD图像存储在计算机里,可以向其它数字图像一样改变对比,找出细节,从而可以电子化的处理。CCD和其它的一些技术进步是今天的天文学家在同一时间内比他们几十年前的前辈多得到几百倍的数据。

58 CCD通常被用来在航天器上成像。如果在天文台进行传统的照相,它可以简单的在一间方便的暗室中进行。但当到了航天器上,拍摄和换胶片就不是那么简单了。所以现代的航天器用CCD和类似的照相机进行电子化的成像。图像存储在航天器上的计算机里或者以数字的形式存储在磁带里,然后以电磁波的形式传回地球,在地面上用计算机重新成图。

59 另一件天文领域通用的工具是光度计。光度计是用来精确测量物体有多亮的电子器件。物体可以是行星恒星星系或其它任何天体。天文学家用的光度计实质上等同于你可以在35mm照相机中找到得非常非常灵敏的光度计。光度计的核心是一块在光落到上面时可以发
射电子流的物质。光越亮,电子流越强。流的大小被记录在计算机里。通常,每次一系列的虑光片被一次放在光源和光度计之间。这样行星恒星星系或其它任何天体在不同颜色的相对亮度就可以测量了。有时在光柱中放一个偏振片然后旋转来看来自目标物体的光本身是不是偏振的。

60 可能现代天文学家使用的最万能的工具是光谱仪。光谱仪是利用棱镜或磨光表面的刻上很多精细的平行条纹的衍射光栅把来自天体的光分裂成彩色的光谱。这个光谱被记录在一张胶片上,或者如果使用了CCD,光谱的数据被收集存储在计算机里以备显示或分析。从光谱里可以决定一个物体很多难以置信的性质,比如它的温度、化学组成、尺寸、自转速率、接近或远离我们的速率、磁场的强度和表现等等。再一次,在所有情况下,天文学家收集和研究光和其它形式的辐射。

61 光谱有三种基本形式。就是通常所说的连续谱、吸收谱和发射谱。

62 热固体或者高压下的热气体产生连续谱。连续谱就是颜色连续扩展开,例如从红到紫。一个热的铁拨火棍,电灯泡里白炽的灯丝,或恒星的内部都产生连续谱。

63 很多恒星有吸收谱或黑线谱。吸收谱或黑线谱就像它的名字显示的,是有黑线穿过的连续谱。当一个恒星产生连续谱后,在辐射穿过空间传送到我们地球这儿以前必须穿过恒星大气。恒星大气中的冷的气体可以吸收连续谱中特定波长的辐射并且在所有的方向折射反射这些不连续的颜色。这样,这些特定波长的光就很少向我们这个方向传播,这些波长就在恒星的光谱中显示成暗线。随后要讨论的,恒星中的每种元素吸收特定的波长,所以谱线的鉴定可以告诉我们特定恒星大气中的元素和其他很多东西。

64 行星也展示出吸收谱线。行星本身不发射光,但是仅仅把太阳光反射到宇宙空间。结果就是,行星的光谱实际就是太阳的光谱只不过由于光线穿进穿出行星大气而产生了额外的对应黑线。

65 非常低的压力下的气体通常产生发射谱或亮线谱。在宇宙空间中这种状态通常存在于恒星的热的稀薄的大气中(像太阳大气中叫做色球层的区域)和恒星吹出的叫做行星星云的气体层。就像名字暗示的,发射谱由叠加在连续的或暗的背景上的一系列亮线组成。

66 什么是光?这很有讽刺性。光就在我们周围,因为它我们才能看到东西。但是要精确的说它是什么却不容易。光可以被认为是有时具有波的性质的在时空中传播的粒子。这是因为光具有双重的性质。如果你想把它描述成波,想象一下大海中一排排的波浪。当然光波不是水组成的而是电能和磁能在空间的共同传播。我们叫做电磁波或电磁辐射。真空中光波的速度是30万千米每秒。从一个波峰到下一个波峰的距离叫波长,一秒钟内通过一个固定点的波峰叫做波的频率。

67光波有非常短的波长。鉴于你习惯于在大海或湖泊中看到的波长有几分米到几米的长短,光波波长大约从300纳米到700纳米。

68 这种不同就是我们称作的颜色。当650纳米的光照射到你的眼睛时,你看到红色。不是因为你生气了,而是这个波长的电磁波刺激了具有正常颜色分辨能力的人的眼睛的视网膜才让你看到了红色。如果400纳米左右的电磁波射到你的眼睛你会看到紫色。波长在上述中间
的电磁波刺激我们的眼睛可以让我们看到其他的从红到橙然后到黄、绿和蓝再到紫。不同的颜色只是由于不同的波长而没有什么其它的。这一我们人眼敏感的颜色或波长分布就被称作可见光谱。

69 在可见光谱以外还有很多很多。只是因为我们的眼睛看不到比紫色光波波长更短的波长并不意味着自然不产生它们。实际上存在。这就是那些可以使我们产生灼伤和使某些物质发荧光的高能射线。因为这些射线有着紫外以外的波长我们叫它紫外射线。在更短的波长我们发现辐射有着更高的能量可以穿过人的身体。我们叫它们X射线。在更短波长更高能量我们发现γ射线。在另一方向,在红光以外我们发现辐射刺激皮肤是我们感觉到热却看不到它。我们叫它红外。在更长的波长上,我们碰到能使你的晚餐迅速做好的微波。再长的波长(现在就在厘米和米的量级了),我们有世界上用来传播音乐、新闻和信息的波——电磁波。

70 所有这些不同形式的电磁辐射有着不同的名称是因为我们在不同的时间发现它们的。最重要的一点实际上它们都是相同的。它们都是电磁波。它们只是波长不同。加起来,这一整个的从射电波到γ射线的跨度组成了电磁波谱。

71 人眼只是对整个电磁波谱中的一小部分敏感。可见光只组成了整个电磁波谱的一小部分。因为这个原因我们实际上只看到了我们身边东西的一小部分。想想做一个类比,只能听到钢琴上的一个键或者管弦乐队演奏的中音C两边的很少一部分。这就指出了我们只用眼睛或光学望远镜看到的整个宇宙的部分的多少。

72 宇宙中的物体发射出比我们的眼睛看到的宽的多的辐射谱。我们的太阳在光学波段发出比其它波段多的多的辐射(这正是我们眼睛敏感的波长范围,这恐怕不是一个巧合),但是太阳实际上辐射所有的波谱。太阳实质发出射电波,红外和紫外波,也发射X射线和γ射线。实际上所有的其他恒星和星系都一样。使用适当的仪器,连续谱、吸收谱和发射谱或者天体在其它波段的直接的像可以得到并且研究。

73 天体在不同的波段看时经常显得奇异。如果我们的眼睛可以像可见光一样看到其它波段的光的话,使用适当的仪器,天文学家可以使天体形成我们眼睛看到的一样的像。(可以把红外辐射转换成可见光而使我们看到黑暗中的物体的夜视镜和医院中拍的X射线片是简单的非天文应用的例子。可见光谱以外的天文图像可能是惊人的。例如在X射线波段,太阳明亮的盘几乎是黑的,但是在可见光波段几乎是黑的磁暴在X射线波段有着极其明亮的并且每天甚至每小时都在爆发性变化的光晕。另外,我们眼睛看来非常平静没有变化的夜空,在X波段和γ波段看来是一个混乱充满暴力的地方。

74 天文学家能够收集和研究越多的天体波长,他们就越能了解这个天体。因为天体在不同的波段看来可能是根本的不同,那么我们能够收集和研究越多的辐射波段,我们就能越多的了解这个天体。确实,把不可见的波段变成可见是20世纪天文最大的发展和胜利。过去所叫的天文现在正确的叫法是可见光波段天文,在过去的半个世纪里我们看到了射电天文、微波天文、红外天文、自外天文、X射线天文和γ射线天文的兴起。相同的天体在不同的波段可以产生不同的图像,这些图像互相补充,以期为我们提供了天体和宇宙的更充分的理解。这些图像联合起来组成了比其单独部分有着更大效用的作用。

75 在地面上只能接受很少一部分电磁波。只有可见光、很少一部分的红外紫外光、和大部
分的射电波谱部分能够很容易得穿过地球大气。(有些射电部分甚至可以穿透云层,因此在阴天也可以到达地面。)因为这个原因,光学天文和射电天文大部分在地球表面上做。

76 一些来自空间的辐射只能穿过大气层的一部分。红外波段很难穿过水汽。因为低层大气有着大量的水汽,红外望远镜一般位于干燥的地区或山峰之上也会放在气球和在高空飞行的喷气飞机上。

77 有些辐射根本不能穿过大气。X和γ射线不能穿透大气(对我们来说是一件幸事),除了一些不幸的臭氧空洞,大部分的紫外波谱也不能穿过。这样,想做紫外、X射线和γ射线波段的天文学家除了把他们的仪器送上大气层以外别无选择,这些观测天文学分支的发展必须等到太空时代的黎明的到来。因为红外天文也受到大气的妨碍,红外天文卫星也越来越多地随着地球卫星飞行了。

78 不同波段使用的望远镜看起来非常的不同。用来做红外和紫外天文的望远镜看起来非常像光学天文中使用的反射望远镜。而射电望远镜外表看起来像卫星或雷达的碟形卫星天线。X射线望远镜不能用普通的镜子聚焦X射线因为X射线是如此之强而可以直接穿过镜子不被反射!取而代之,X 射线望远镜的里面看起来像一堆底被敲掉的抛光的金属碗,来到的X射线被抛光金属面散射而被聚焦。收集所有电磁辐射中能量最大的γ射线望远镜更像一个 盖革计数管。

79 一眼看过去,射电望远镜看来和光学望远镜很不相同,实际上不是的。射电望远镜看起来像卫星的蝶形天线,但是它们工作起来和光学反射望远镜十分相似。碗形的天线代替了光学望远镜的反射主镜,并且在天文学家放仪器的地方把遥远天体的射电波收集聚焦。因为这是射电天文,探测器不能是照相机或光度计取而代之的是一个非常灵敏的射电接受器。这种类推对于你的电视卫星天线也是有效的。都是接受射电波的设备。但是射电望远镜对于接受到的射电波比你私人的电子设备灵敏几百万倍。

80 类似于光学望远镜,射电望远镜越大,它可以收集越多的辐射。但是射电望远镜也因为另一个原因而需要更大。我们早先提到的,一架望远镜的分辨率决定于主镜的尺寸。尽管如此那次给的简单公式有点太简单了,因为它只工作与光学波段。实际上,望远镜的分辨率也取决于它所聚焦的波长。波长越长,同样尺寸的望远镜得到的像越模糊。因为射电波长比光学波长长了几千到几百万倍,为了得到相同的清晰度射电望远镜的接收天线应当比光学望远镜主镜大几千到几百万倍。因为这样的工程技术还达不到,射电望远镜只有几百英尺的接收天线。最大的单接收天线射电望远镜位于波多黎各一个山谷,有1000英尺的口径。这架望远镜仍然不能像大多数的光学望远镜在光学波段看得那样清楚。

81 就像光学望远镜,射电望远镜可以连在一起产生干涉。天文学家可以克服射电波长的自然缺陷,他们把两个或多个单个的射电望远镜连在一起,有效地把单个的望远镜综合成具有它们之间距离的口径的望远镜。一个例子就是VLA,或者说深大阵列。它是由27个每个80英尺口径的射电望远镜排列在新墨西哥州的一个Y形的铁轨上组成。天线之间最大的距离是26英里。结果就像我们拥有了一架由华盛顿环城路那么大的射电望远镜。VLA可以在射电波段以0.1角秒的分辨率看清物体的细节——比地面上任何一个单独的光学望远镜都好。

82 超越VLA。世界上不同地方的射电望远镜甚至把它们所有的信号都联合起来模拟一架有我们整个星球大的天线。这样一个阵被称为VLBI,或称为甚长基线干涉仪。这样的一个网络从太平洋中部的夏威夷延伸到加勒比海的St.Croix。单个的射电望远镜离的越远,计算机就需要越长的时间整合数据。

83 另一些望远镜探测一种叫做宇宙线的东西。就像它们的名字显示的,宇宙线不是电磁波。它们是很小的亚原子粒子(大多数是质子和氦核)以接近于光速的速度从空间流进我们的大气层。它们的起源仍然在争论之中,但是大多数看起来像是由于超新星的爆发或是含有致密的中子星的双星系统的相互作用产生的。然后粒子被星系的磁场加速,从任何可以想象的方向打向我们。当宇宙射线进入地球大气层的时候,它们可能和我们头顶的高层大气碰撞产生很弱的只能被非常灵敏的探测器检测到的光。宇宙射线也可以用气球载的或飞机载盖革计数器直接研究。

84 一些望远镜是埋在地底下的。更奇怪的是,有时它们需要装满液体。这些望远镜更正确的是被叫做探测器,它们由能装几万到几十万加仑的大罐子组成。被用来探测太阳、其他恒星和超新星爆发发出的中微子。当中微子穿过这个大罐子,它们只有很小的机会和其中一个原子碰撞比把它转化为另一种原子。定期的冲洗检查罐子里的东西,科学家可以确定有多少中微子穿过探测器。其它的中微子探测器装满了纯水。当中微子穿过并和水互相作用,产生很小的闪光而被放在水中的极其灵敏的测光计捕捉。这些罐子都埋在在很深的地下(在像南达科他州的一个废弃金矿和伊利湖的一个盐矿里)来屏蔽其它粒子向宇宙线的的影响,而只让中微子通过。

85 其他探测器在宇宙深处寻找引力波。根据爱因斯坦的广义相对论,运动状态快速变动的物体可能产生引力波,实际上是时空的扭曲。物体的质量和加速度越大,引力波的波幅越大。引力波传过地球上的物体时会在这些物体上产生微小的动量扭曲,如果物体和外界震动充分隔绝并且和足够灵敏的探测器相连,就可以记录下来。马里兰大学的约瑟夫·韦伯建造的早期的引力波探测器被证明不够灵敏。正在美国的不同地方建造的新的探测器应该能够探测到7000万光年以外的灾难性事件比如中子星碰撞释放出来的能量。
物质的性质

86 最基本的物质形式叫做原子。世界上有从水到特氟纶的数十亿种自然的和人造的物质,但是所有的这些都可以在化学实验室中分解成更简单的物质。例如利用电流水可以分解成两种气体,即氢气和氧气,或者其它的,普通的食盐(氯化钠)可以分解成金属钠,和一种有毒气体叫做氯气。这四种物质中的每一个——氢气、氧气、纳和氯气——有这独一无二的性质。没有哪一种能够进一步分解而不丢失它们的性质,还是氢气、氧气、纳和氯气。它们是最基本的物质因此被叫做元素。依然保持这种元素性质的最小单元叫做原子。尽管如此,原子被认为是由更小的叫做质子、中子和电子的粒子组成的。通常,质子和中子紧密结合在原子的中心,电子以一定距离绕核旋转。实际上又一个整个的亚原子粒子家族,除了极少例外,本书不会接触它们。

87 当原子组合在一起,它们组成了分子。两个或更多原子结合在一起,形成了分子。例如,一个碳原子和一个氧原子组成一个一氧化碳分子。一个碳原子和两个氧原子组成一个二氧化碳分子。分子只含有很少几个原子的通常叫做简单分子,含有很多原子的分子叫做复杂分子。究竟几个原子从简单变为复杂决定于你谈话的对象。当射电天文学家在星际空间找到6到8个原子的分子时,他们把它叫做复杂分子,因为没有人会想到在险恶的宇宙空间可以找到这种东西。但是生化学家可能会把这种分子称为很简单的分子。

88 在整个宇宙,只有92种自然产生的元素。唯一的决定这种特定的元素是这种元素而不是其它的元素的是在原子核里的质子数量。例如,在宇宙中每个原子核里有一个质子的原子是氢,每个核里有两个质子的原子是氦而不会是其他。碳原子有6个质子,氧原子有8个质子等等。一直到核里有92个质子的铀。原子核里有相同质子和电子数的元素具有相似的化学性质,为了简便,科学家们按照质子数目把元素进行了分组,这就是元素周期表。世界上每个化学实验室里或课堂上通常会有这么一张。这是世界的蓝本,因为就92个基本的元素构成了我们的世界。Armand Deutsch许多年前写过精彩的科学小说。一组未来的考古学家在开凿古火星人的文明遗迹,发现了一所大学。他们正为无法破解火星语言而感到困惑的时候来到一个化学实验室,在实验室的墙上发现了元素周期表---一个马上被他们识别的东西。因为它代表了通用的,超越文化甚至是种族的东西。所以,元素周期表成了破解火星语言的敲门砖。核中具有少量质子的元素有时被称为轻元素或简单元素;有大量原子的就叫重元素或复杂元素。

89 什么是离子?在鸡尾酒会上,当谈话转到“原子物质”时,经常听到的另外两个词是离子和同位素。在讨论离子时,我们就必须注意一类叫做电子的绕着原子核转的小东西。通常情况下,原子的整体是中性的,因为在原子核内带正电的质子数和核外绕核旋转的带负电的电子数相同。但是因为一些电子离原子核非常远,它们被频繁的撞击出去,这样剩下的原子所带的正电就比负电多。同样的道理,电子也可以频繁的被加给原子,使它净增负电荷。简单的说,带有正的或负的净电荷的原子就叫做离子。

90 什么是同位素?在任何关于同位素的讨论中,我们必须关注在原子核里另外一种粒子---中子。同位素是原子核里含有不同数目中子的同种元素的不同形式。举个例子来说,存在三种碳的同位素,它们是碳-12,碳-13和碳-14。这些数字与每个原子核内各自的中子数有关。因为原子核内的质子数决定着它是何种元素,所有核内有12个质子的原子都是碳原子,而不是考虑它们是不是有12、13或者14个中子。每种同位素在质量上都有微小的差距。所有碳构成的东西,不管是石墨还是钻石,都是碳同位素的混合体。

91 一些元素的某些同位素是放射性的。放射性原子自发的变成其他原子,这是一个很快的反应。有时某些原子失去原子核中的中子,变成原来元素的同位素。这样的过程叫做放射性衰变。举例来说,铀能经历一系列的放射性衰变而最终变成铅。一些元素的某些同位素是具有强放射性的,这表示它们衰变成其他东西的速率相对于其他一些衰变非常慢或根本不衰变的元素要快得多。那些衰变慢或不衰变的原子叫做放射性稳定。

92 放射性衰变以不同的速率发生。在所有给出的放射性物质的样品中,你不能事先预测其中的哪些原子将要自发衰变。原子也不会事先告诉你它们将要做什么。但是通过观察和认真的测算,科学家已经发现同种同位素的整个样品的衰变率是个常数。使任何给定样品的同位素衰变成总量一半所需的时间叫做同位素的半衰期。强放射性的同位素的半衰期很短,而稳定的同位素半衰期则很长。

93 放射性衰变是重要的科学工具。所有的这些知识变成测定某物存在时间长短的一项重要的工具。例如,如果你将存在于某物(范围可以从恐龙的骨头到都灵的寿衣再到月球上的岩石)中某种放射性同位素的总量与这个样本中与之相同元素的另一种稳定的同位素的总量相比较,然后将这些数字与你已知的不怎么久远的物品中相同的同位素的量相比较,并且你知道它放射性同位素半衰期的长度,那么你就能算出你所研究的样本有多古老。生物学家,考古学家和古生物学家大量的运用此种技术,尤其是大量使用碳的同位素,这个过程叫做碳定年。天文学家有时也采用该技术,有的时候为了方便除了碳也使用其他元素的同位素。

94 物质典型存在于三种态。我们知道三态分别是:固态,液态和气态。在特定的时间特定的地点物质处于什么态取决于物质的化学本质,环境的温度和压强。在地球上,我们找一个事物为例,我们能看到它的三个态。它由两个氢原子和一个氧原子组成: 。在一般情况下,当温度低于华氏32度时我们称之为冰,当温度在华氏32度到212度之间时我们称之为水,高于华氏212度时,我们称之为水蒸气。(在非常高的温度下,氢和氧原子之间的键被打破,它的本质就不再是水蒸气,就是氢气和氧气的混合气体。)

95 我们在温度和压强的特定范围内在宇宙中搜寻,物质会有很奇怪的组成和行为方式。以在火星上为例,气压计液柱将很难移动,因为火星几乎没有大气,所以在火星表面上基本上没有气压。在这种情况下,直接从气态的水蒸气变为固态的冰,中间没有经过变为液态水的过程。所以今天的火星上没有河流或湖泊。我们把这个过程叫做升华。樟脑球做成的东西在地球上就会升华(它们不会在衣橱里留下水汤)。简而言之,正常的状态是什么和你要进行的预测都取决于你身处于哪里。当天文学家了解了这些,研究整个宇宙就会更顺手一些。

96 当离子以气态存在时,它们形成等离子体。一些人把这个状态认为是物质的第四种状态,因为等离子体带电而常规的气体是电中性的。这个还有一点语义学的味道,只要我们知道什么是什么就好。恒星是典型的由气体组成的物体,大多数气体非常热,它们处于等离子态。这变得很有意义,因为磁场与等离子体有关而与中性气体无关。大多数恒星所带的磁场对恒星、恒星大气和物质在恒星表面上的移动或穿越有很大的影响。

97 流体:你把它放在什么样容器里它就拥有什么形状。液体,气体和等离子体常常都被称为流体,因为它们显现的都是承载它们的容器的形状。(把一品脱水倒进一个馅饼盘里,水就呈现馅饼盘的形状,把它倒入鱼缸里,它又呈现鱼缸的形状。同样的,在贴着“氖”标签罐子里的气体呈罐子的形状。)当你把两个固体拿到一起磨擦(就像天冷的时候你搓手那样),这个动作将遇到一个对抗的力,这个力叫做阻力,它会产生热量。我们通常认为流体没有阻力,但它们确实有。然而,在一定的温度和压强下,这个阻力可以变为零。在某种条件下的这种特性叫做超流。大多数恒星由流体组成的,但中子星却是由超流的中子组成。

98 固体 一些固体具有晶体结构,这意味着它们的原子是按照一定的有规则的几何样式排列的。例如盐和处于金刚石状态的碳。其他固体,比如用来做塑像的粘土,它们是无定形的,因为它们的原子不是刚性的排列。白矮星的内部类似于晶体,尽管它们的电子在核外自由的运动着,但它们的原子核是按规则的样式排列的。

99 “暗物质”是一种不同的物质。基于对星系和星系团里恒星运动的学习,天文学家知道宇宙的大部分不处于我们上面提到的那几种态,大部分物质由其他形式的离子组成。到目前为止,这种物质避过了直接观测,因为它们好像与普通的物体或任意波段的辐射都作用甚微。正因为这个原因,天文学家称呼它暗物质。暗物质的本质仍然是20世纪后期天体物理学的几个重大未解之谜之一。

100 最后,我们来介绍反物质。在恒星的研究中,斯科蒂和吉奥蒂总是很关心反物质。反物质同普通物质一样,也是由粒子组成。其实,这个粒子和我们常见的普通的粒子除了电荷相反意外,其他是一致的。所以,电子的反粒子叫做正电子,它的质量与电子相同但是带正电荷。质子的反粒子叫做反质子,质量与质子一样但是带负电。如果一个物质的粒子与它的反粒子碰撞,它们互相消灭并只释放出能量。(这就是为什么斯科蒂和吉奥蒂喜欢反物质的原因。)反物质存在于宇宙中,但是因为在它们周围存在太多的普通物质,所以它们一经产生就面临着湮灭的厄运。大块的反物质甚至是原子大小的反物质在我们的宇宙里都是不存在的。其他宇宙主要由反物质组成在理论上是可能的。 第二章 简要的历史回顾:站在巨人的肩膀上
 

101 许多早期的关于宇宙的看法都是将地球摆在所有物体的中心。从古希腊到印度和中国,许多文化发展了地心说或者被称之为地球中心论这样的对宇宙的观点。这个幻想毕竟很强烈。地球感觉上非常像是固定的,天上的光每天每夜都绕着它转。

102 最先受亚里士多德影响,许多古希腊人区分了天地的领域:天在上面地在下面。对于亚里士多德来说,地球上的所有东西都由四种元素组成:土地,空气,火和水。天上的太阳,月亮和已知的五大行星也被装在了水晶球里。这些球体被包含所有恒星的天球包含。它们都绕着地球转圈。它们必须作圆轨道运动,亚里士多德说,因为圆是完美的。而天上的东西都是以完美的方式运动。这些天体和它们的水晶球是由五种元素组成的,或称为五种精华。在它们下面属于地球的领域。有一条恒定的规律,就是出生,死亡和腐烂。但是在天空的领域,所有的东西的都是纯净的,无瑕疵的,永恒不变的。天上在外表上看永远是平静的,不变的。一切都是完美的。

103 亚里士多德的宇宙图是优雅的,但是不够精确。古中国的天空观测者不知道亚里士多德的这些论断,因此也没有受到亚里士多德的影响。他们观测并且记录下了天空的变化。这些包括被假设为无瑕疵的太阳上的黑子的出现和消失。彗星像扫把一样划过天空,客星突然间发光,以至于白天也能看到。(西方人肯定也看到过这种现象,但是当时最好的做法是保持沉默,不要让自己的言论与哲学的伟人们矛盾)如果出现一次观测,非常明显并且非常持久,那么就不可能忽略掉它。

104 一些行星的表现不够“规矩”。经常搞观测的人都知道在一定的时间在自己轨道上运行的火星,木星,土星会停止它们一贯的向东行进而改为一个U形的弯运动。即有的时候向西运动,然后再作一个U型弯运动。最后才改回到原来的向东行进。更糟糕的是,这些退行,环形或者Z型运动几乎没有相同的形状和大小。为了保留亚里士多德的天体运动的假设,大量的天文学家,哲学家和数学家在试图保留亚里士多德的“宗教”假设(天上的物体必须做完美的圆轨道运动)的前提下试图解释这个复杂的运动。

105 托勒密的复杂天球机器。公元二世纪,一位希腊的数学家,天文学家托勒密继承了亚里士多德的理论体系,并且在外层行星的大球上加了一些小球(本轮)。这样表示外层的行星在小球上运动,而它们的中心又在主水晶球上绕着地球转动。加上的这些小球(总共有80个)是为了解决观测上出现的退行现象。用这种聪明的方法,托勒密和他的同事们就既能解释外层行星的退行现象又能使它们符合圆周运动。这种模型在西方整整统治了14个世纪。

106 在16世纪,一个羞涩的波兰传教士发起了革命,并且改变了宇宙。在接下来的几个世纪里,仍然有人对托勒密的大环套小环的复杂模型不满意。尼古拉斯哥白尼有着数学功底和敏锐的洞察力,他准备做点什么。他意识到他可以去除掉托勒密系统中的本轮,只要通过一点点改变就能使这个复杂的系统变得简单得多。这个办法就是把地球从中心的位置剔除,把太阳放在那里,并且让地球也像其他行星一样绕着太阳转。这样的解决办法很简单,但是要借助大量的数学。这就是所谓日心说的宇宙模型。

107 托勒密体系之所以很长的时间内都有很高的地位是因为宗教原因。哥白尼很小心,他没有立即站出来说他的新观念是正确的。因为那样只能使当权者不高兴,甚至威胁到自己的健康。他只是简单的把它带给世界,作为一本“数学练习”带个罗马教皇统治下的世界。因为不准备去冒险,哥白尼直到去世的时候才将它发表。

108 意大利天文学家伽利略找到了支持哥白尼模型的证据。对亚里士多德和他的追随者们,科学顶多是建立在科学实验的纯粹推理上。而对于伽利略来说,证据就在布丁里,如果你想知道天空的机制是什么,你的布丁就在天上。听说了一种可以使远处物体在近处看的很清楚的装置(望远镜)之后,伽利略造了许多自己设计的望远镜,并且把它们对准了天空。他记录下月亮其实很不完美,不像众多哲学家相信的那样,月亮上既有高山又有深谷。伽利略还记录了太阳的黑子。并且发现了木星的四颗卫星。最后,他观测了金星,它像地球的卫星月亮,并且也有相的变化。这个发现听起来就是亚里士多德和托勒纳米体系的丧钟。因为能看到金星的相的变化,金星就必须绕着太阳转,而不是地球。然而伽利略的发现在他的那个年代并不受欢迎。更喜欢亚里士多德和托勒密体系的教廷迫使他放弃自己的观点,并且在他的后半生软禁了他。

109 两位与伽利略同时代的人也帮助摧毁了亚里士多德的水晶球系统。伽利略有力的打击了亚里士多德的宇宙体系,并且证明了哥白尼的理论是正确的。但是即使是哥白尼也没有完全抛弃宇宙中所有的运动都是圆运动的观念。第谷,伽利略同时代的一个人,在他的工作里没有使用望远镜,但却给出了那个年代行星运动最精确的测量法。他的合作人,稍微有点神秘兮兮但却是一位精明数学家的开普勒,通过观测来检查行星运动。他的工作比任何前人做的都要好。

110 开普勒首先提出行星绕太阳作椭圆轨道运动。当他检查第谷数据的时候,他意识到行星不能像人们想象的那样绕着太阳作圆轨道运动,取而代之的应该是椭圆轨道运动。开普勒还提出了今天所有行星遵循的行星运动三大定律。下面是开普勒的行星运动的三大定律:
1 行星绕太阳作椭圆轨道运动,太阳在椭圆的一个焦点上。
2 行星不是以恒定速度绕太阳运动的,行星距离太阳越近,运动的越快。
3 距离太阳越近的行星,它绕太阳转一圈所用的时间就越短。

111 一个叫伊萨克牛顿的天才把开普勒的工作推进了一步。在伽利略去世的那年,伊萨克牛顿出生了。开普勒提出了行星绕太阳作椭圆轨道运动而不是圆轨道运动,这符合事实,但他自己却不知道为什么。牛顿发明了数学的一个分支——微积分学,并且以它为工具,以一种今天我们称之为引力的力来解释物体的运动。

112 牛顿很可能从来没有像传奇中说的那样被苹果砸到。但是他很可能确实看到过苹果从树上掉下来,这激发了他对引力的思考。那么这种看不见的力既然能到达树上把苹果拉到地上,为什么它不能到达月球把月球拉到地球上来呢?用数学描述引力的行为,牛顿可以证明相同性质的力确实控制着苹果,月球以及宇宙中其他所有运动物体。通过极其敏锐的洞察力,牛顿说明了引力是普遍存在的力,并且用数学语言给出了这个统治宇宙中所有运动物体的力的精确表达式。他不只说明了我们在地球上经受的物理现象与宇宙中其他地方也是一样的,还表明了人类有能力了解这种力。

113 除了万有引力定律,牛顿还描述了三大运动定律。
1 如果没有外力作用,一个物体将保持静止或匀速直线运动。
2 如果一个拉力或推力作用在一个物体上,它将改变物体的速度或速度的方向。
3 如果一个物体对另一个物体施加力的作用,那么它将受到等量的反向的力的作用。
这些定理控制一切,从曲棍球到赛车,从宇宙飞船到绕太阳运动的行星。

114 在20世纪初期,爱因斯坦又突破了牛顿的体系。在1913年,阿尔伯特爱因斯坦出版了他的狭义相对论。在书中,他表示牛顿定律在平时的低速世界里是适用的,但在高速世界里它就被破坏了,即当速度接近光速的时候。这个理论的一个基本假定是光速是不变的。光速与光源的运动速度和观测者的运动速度无关。这看似荒谬,但已经被大量的独立实验证实。并且它引出了三个与观测者速度相关的物理量---质量,长度和时间。举例来说,一个以接近光速的飞船朝你飞来的时候,它的质量变大,在行进方向的长度变短,并且飞船上的时间与停在你旁边的飞船相比慢很多。尽管同样的奇怪,但这也被证实了,并且应用于现实的计算中。

115 几年过后,爱因斯坦出版了他的广义相对论。广义相对论解决牛顿力学里引力的问题,并且指出一个物体影响它旁边另一个物体的运动,不仅仅是因为引力,它的质量也弯曲了它周围的空间。更进一步的还有,物体的质量不止影响空间,还会影响时间,使时间变慢。这同样使人很困惑,但这已经被证实是一个很有效的理论。

116天文学的进步是很多人努力的结果。对于他的成就,牛顿说:“如果我比别人看得更远,是因为我站在了巨人的肩膀上。”比牛顿早的时代和晚的时代里都有很多科学巨人,你可以阅读他们的传记或书籍来了解我们这个神奇的宇宙。 ---第三章 月球:我们最近的邻居已有 285 次阅读  2009-07-16 09:01   标签:  月球  天文  邻居 第一章 天文学、天文学家和专业工具
第二章 简要的历史回顾:站在巨人的肩膀上
第三章 月球:我们最近的邻居
第四章 我们的生命之灯——太阳
第五章 内太阳系:小型行星的世界第六章 外太阳系:巨型行星的世界
第七章 小行星、彗星、流星体以及宇宙尘
第八章 深邃的夜空:太阳系外的世界

117 荒无人烟的月球是我们宇宙中最近的邻居。月球的直径是2160英里,和美国东海岸到西海岸的距离差不多。这是一个没有空气没有水的地方(除了南极附近有少量的冰),从来就没有生命在这里存在过。地球和月球的平均距离是238000英里。

118 白天的时候月球上很热,而夜晚则很冷。一个行星或卫星的大气越厚,早晚的温差就越小。因为月球没有大气,平常的温度计在这里根本无法使用。在月球赤道上,中午的温度在华氏210度左右,然而在同一地点,午夜时的温度将下降到刺骨的华氏零下250度。

119 最典型的月球特征是环形山。月球上有数以百万计的环形山,大多数都是被小行星、流星和彗星撞击形成的。这些碰撞大部分发生在很久以前。还有一些碰撞现在仍在发生。月球没有大气保护,所以这些物体以几十英里每秒的速度无阻力的撞到月球表面上。许多环形山都能用小型望远镜观察到。环形山有很小的,也有直径100英里的很大的。一些环形山的边缘有20000英尺高。

120 小的坑里有更小的坑…..一直到无穷多个。如果我们要数月球上到底有多少个不同大小的坑,我们能找到少量的大坑,但是我们能找到很多的小坑。原因是在宇宙空间里小体积的物体比大体积的物体多的多。另一个原因是不同大小坑是怎么形成的。简而言之,这不是一蹴而就的。首先形成的是当流星或其它物体撞击月面形成的初始坑。当撞击发生的时候,月球上的小块岩石被砸向初始坑的各个方向。这些小块的物体再次撞击月面,形成第二次的撞击坑。碎片再次被抛出去,重复前面的过程就形成了更小的坑…..

121 一些月球坑放出明亮的光。像第谷和哥白尼这样的月球坑放射明亮的光线,远到几百英里长,就像是轮子。这种装饰性的效果是月球坑形成的时候被抛出去的浅颜色的物质造成的。放光的坑是新形成的,随着时间的推移,它们将因为月球昼夜的温差,和月面的扩张和收缩而逐渐消失。

122 研究月球特征能帮助我们判断它们相关的年龄。一些环形山有尖锐的,明显的轮廓。其他一些则呈现出破碎的轮廓,前者是新形成的,而后者显示了流星碰撞时的信息,也能显示因为昼夜巨大温差而造成的固体扩张与收缩而导致的一种叫月球“侵蚀”的相关信息。有时候我们看到两个环形山有些部分重叠在一起。一个环形山穿过了另一个的边缘或者在另一个的内部,很明显这个陨石坑是新形成的。

123 如果你有20/20的视力,你能裸眼分辨出月球的一个环形山。正如你所想的,你裸眼能看到的那个就是月球上最大的环形山,它叫格里马迪。它暗色的基底使它能在周围浅色的环境中被分辨出来。如果你把一轮圆月想象成一个表盘,在九点方向月球的左边缘你就能找到它。它看上去是一个小的暗的椭圆,但实际上它的直径超过100英里。

124 地球经受的撞击远比月球多得多,然而只有很少的陨石坑。因为具有更大的质量和体积,地球在它的一生中将比月球吸引更多的流星。然而月球看起来才是一个真正的陨石坑世界,而地球则不是。地球的气候和地壳运动始终是使它变得平坦的方向努力,而月球则缺少这种力,所以它一直保持着它早年留下的伤疤。

125 月球也有范围很大的山脉。月球有一些山脉,亚平宁山脉是其中最著名的几个之一。它的一些山峰比珠穆朗玛峰还要高。不像地球,月球没有盘状构造也没有风或雨的侵蚀,因此一旦山峰形成,除了碰撞造成的粉碎,高度一般都不会改变。
126月球也有被称为“海”,“峭壁”,“河”的特征。月海不是实际的水体,而是大范围绵延数百英里的暗色的固化的互相连接的平滑的熔岩链。在别处,我们找到了数十英里高的峭壁和蜿蜒的叫做“河”的谷地。“河”可能是月球表面下熔岩的通道塌陷造成的。

 

127 月球的表面不同的区域呈现不同的亮度。即使是用眼镜或裸眼看上月亮一眼,你也会发现月面各个地方的亮度不是一样的。月球某种程度上是杂色的。浅色区是月球上的高地。大多数这样的区域都是多山的或遭受严重撞击的地区。
128月球也有暗区。月球上的黑暗地区形状大多数都是圆形的,就是俗称的“月海”。这个名字能回溯到早些时候,那时候平坦黑暗的外观让一些天文学家猜测它们可能是水体。今天我们意识到它们是从月球演化早期,从表面下很深地方涌出、留向洼地的相当大的固化熔岩链。月海这个词现在仍在使用,然而它们大多见于诗句,就像 “平静的海”,“云海”。

129 是什么造成了“月球人”的幻觉?浅色的高地区域和深色的熔岩链(月海)的相互影响创造了所谓的月球人。两个月球的熔岩链,“平静海”和“宁静海”(太空人第一次在月球着陆的地方)构成了左眼,而“雨海”则构成了右眼。亚平宁山脉构成了鼻子,其他一些聚集在一起的链,其中包括“蒸汽海”弯曲成了人的小嘴。许多不同的文化把亮和暗的区域用其他的方式来解释,于是就有了“嫦娥”,“月兔”甚至是“月雾”的叫法。这些都使得月球看起来像一种宇宙的罗夏(墨迹)测验。

130 月球有定期的月相循环。每29.53天月球完成一次月相的循环。这个循环的主要的点分别叫做“新月”,“娥眉月”,“上弦月”,“盈凸月”,“满月”,“亏凸月”,“下弦月”和“残月”。循环的起点是“新月”。

131 什么是渐满的月亮,渐亏的月亮?当月球渐满的时候,它每晚都比前一晚变得更圆。当月球渐亏的时候,它每晚都比前一晚亏得更多。在新月和满月之间,月亮渐满;在满月和新月之间,月球渐亏。

132 你可以通过每晚的观察看到月相循环变化的过程。除非日食,否则我们看不到新月。因为在这个月相的时候,月球处在地球和太阳之间,所以太阳照亮的是月球背向地球的一边。新月过后的几天内,我们将在日落后西方的天空中看到细细的渐满的月亮,这是“娥眉月”相。之后每晚月亮都变得丰满一些,直到新月之后的一个星期多一点的时候,我们将在南天正好看到月亮右边的一半。这叫做上弦月,月球完成了月相循环的四分之一。过了这一晚,月亮变得更圆,形状开始变得像一个鸡蛋了。这叫做“盈凸月”相。新月过后的15天再多一些的时候,从地球上看,月球正好在太阳的相反的一边,这时太阳照亮了月亮的整个半球,我们看到了“满月”。在接下来的两个星期里,月球从“盈月”相——从越变越圆变成越变越不圆的“亏月”相。从这天开始,我们将看到一个越来越小的月亮。首先是月亮左半边越来越平的“亏凸月”相。新月过后的三个星期多一点的时候,我们看到了被太阳照亮了左半边的月亮,这时我们经过了月相循环的四分之三,它叫做下弦月。在月相循环的最后几天,月亮变得越来越细,这就做“残月”相,我们在黎明前可以看到它。最后它又来到了下一个新月的位置。

133 你能通过一个球和灯的关系来理解月相是怎样变化和为什么变化的。理解月亮是怎样进行月相循环和为什么进行循环的是一件很有意思的事情。在一间黑暗的屋子里通过一个球和一盏灯你就能马上证明给自己看。你所需要的仅仅是一个球(任何大小的都可以)和一个能 造成尖锐阴影的无影灯。把灯放好然后打开,使灯泡与你的肩膀同高。关掉屋里的其他灯。把球拿在手,身体离灯要有一定的距离。灯代表太阳,球代表月亮,你的头就代表地球。把手臂向前伸直,把球举到与肩同高的位置。然后你开始缓慢的转圈,同时保持刚才的姿势。当你旋转的时候,你将能看到球类似于月亮的像的变化。实际上灯,你的头和球的位置关系就是太阳,地球和月球的位置关系。当你把球拿到你和灯之间的时候,你将看到球切断了来自于灯的光线,形成了“日食”。当你正好处在灯和球之间的时候,你头部的影子落在了球上,形成了“月食”。这样的实验很有趣,一定要试一试!

134 明暗界限在日出和日落时在月球上留下晨昏界线。当月亮渐满的时候,明暗界限将出现在日出的方向。每晚都用望远镜观察,你将能看到这条线逐渐向西移动。,就像地球上一小时一小时的流逝。当月亮逐渐变小的时候,明暗界限出现在日落的方向。每晚观测,这条线逐渐向西移动,并且吞噬更多的月面使月亮越变越小。

135 当月亮渐缺的时候,地球反照是一个相当美丽的现象。在新月的前几天或后几天,月亮在天上相当的小,但是当你用双眼仔细观察的时候,你将来看到被地球影子遮住的部分仍然隐约可见。这种现象就叫地球反照。是太阳光照在地球上然后反射到黑暗中的那部分把月亮照亮造成的。当提及在黄昏出现的娥眉月时,这样的现象有时在诗里叫做“旧月亮在新月亮的怀抱”。

136 如果你知道正确的位置,你能经常在白天看到月亮。当月亮由亏转盈,它在日落前升起,所以至少在下午的时间里看到它。当娥眉月时,你将在快到晚上的时候,在西南方天空中找到它。上弦月可以在下午的东南或南方的天上找到。盈凸月在一天的晚些时候可以在东方或东南方向找到,它十分明显。在满月过后,月亮在日落后升起,在日出后落下。所以在早上西方的天空中可以看到亏凸月。下弦月在一天中早些时候的南天可以找到。残月基本上就在太阳的方向。

137 我们在地球上看到的总是月球的同一面。月球总是以同一半球对着地球。这意味着我们看到的总是同一个月面。如果你在新月的时候发射强大的探测光照亮月面,你将发现它和满月的时候是一样的月面。

138 月球没有黑暗面。这是一张经典的摇滚唱片的名字,但据记录,没有月球的黑暗面。月球确实在任意时间总有半球处在黑暗的状态当中,但是当它绕着地球转的时候,它的面就被太阳照亮,而且这些面是不断变化的。这一时刻处在黑暗中的面将在两个星期后被照亮。

139 随着时间的流逝,月亮展示给我们的不止半个月面。当月亮以同一个面对着我们的时候,它的转动轴有微小的震动。这种振动是天平动。这使我们能交替的看到它的东边缘和西边缘。而且因为月球绕地球转的轨道和地球绕太阳转的轨道有一定的倾角,我们有时也能瞥到它的上下两极。总之这让我们看到了59%的月面,而不是50%。

140 月球朝向地球的一面和背向地球的一面有很大的不同。朝向地球的一面既能表现光又能表现阴暗,而背向地球的一面则有很少的阴暗区,更多的坑和高地。没有人知道这是为什么,但是大撞击可能开始的时候只发生在一个半球。猜测这和地球有一定的关系可能很有诱惑力。但是大撞击可能发生在月球减慢自转,使一个面朝向地球之前。

141 月亮在地平线的时候看起来比在空中的时候大。从学术角度讲,月亮在地平时比升上天空的时候距离地球要远上4000英里。但是一个升起的满月确实会看起来很大。这种涉及月球幻想的现象更多地来自于心理。这种幻想是大脑首先把从地平升起来月亮想象成月球变得越来越近的思想放了进去,意识将不同程度的影响前景物体造成错觉。这种离奇的东西没有一种解释得到了公认,但是下一次你看到满月刚刚升起的时候,不要说它比升上去的时候大,这只是个幻觉。

142 满月总是当太阳在西边落下的时候从东方升起。当满月的时候,月亮在空中的位置总是和太阳反向。正因为此,满月总是在太阳落下西方地平的时候在东方升起。当月亮在第二天早上从西边落下的时候,太阳正好从东边地平升起。

143 满月会很亮,但是…月亮在天上可以很亮,但事实上它是一个很暗的物体。它的大多数岩石和土壤是灰色的,月亮只反射太阳照到它上面的大约百分之七的能量。其他行星的卫星大多数都反射太阳照在它们上面的百分之八十的能量,因为它们是由大量的冰构成的。我们可以想象一下,如果我们也有一个冰月亮绕着我们转,我们的夜晚将会多么明亮啊!

144 在谈论月球或其他行星及其卫星的亮度的时候,天文学家常用一个叫“照度”的词。一个物体的照度就是该物体反射或散射太阳辐射的百分比。所以我们也可以说月亮的照度是百分之七。而外层行星的卫星的照度通常是百分之八十。

145 不同的满月以不同的路径穿过空中。因为地球的转轴与它的轨道有一定的倾角,而月球绕地球的轨道也有一定的倾斜与地球绕太阳的轨道也存在倾角,所以月球以不同的路径经过空中。在中纬度地区寒冷的冬夜里,满月能爬到中天,而夏天刚开始的时候它只能很低的划过南天。在一些地区,在一年的雨季里我们将透过很多水气看到这个六月份的月亮。水气散射掉蓝光和紫光,这样月亮看起来是桔黄色的。豪无疑问这样的“蜜月”与一年中结婚的传统有关。

146 我们“月份”的说法就衍生于“月”。月相变化一圈就是一个月,这一点都不奇怪。这变成了一样很方便的计算时间的方法,并且存在于很多文化之中。

147 许多美国的本土文化给一年中不同的满月取了不同的名字。在许多名字中,常见的有如下一些:
一月份:Old Moon
二月份:Snow, Hunger, or Wolf Moon
三月份:Sap or Crow Moon
四月份:Grass or Egg Moon
五月份:Planting or Milk Moon
六月份:Rose, Flower or Strawberry Moon
七月份:Thunder or Hay Moon
八月份:Green Corn or Hay Moon九月份:Fruit or Harvest Moon
十月份:Hunter’s Moon
十一月份:Frosty or Beaver Moon
十二月份:Long Night Moon

148 因为在天空中的位置,Harvest Moon真的对农民收庄稼有帮助。因为月球的轨道面与地球的轨道面存在倾角,所以在一年中月亮升起来的时间会不太一样。春天刚刚到来的时候,月亮每天都会比前一天正好晚升起一个小时。然而,在秋天刚开始的时候,情况正好反过来了,月亮好几个晚上都在同一时间升起。这个“Harvest Moon”在太阳从西边落山的时候,在东边给农民们一个光的延迟效应,而这个时候正好是一年中农民花最多时间收庄稼的时候。

149 每年“Harvest Moon”的日期由另一个天文事件决定。“Harvest Moon”是接近秋分点的满月,换句话说它出现的时间最接近秋季的第一天。因为秋季的第一天是9月22号或9月23号,而满月通常发生在这个日期的前半个月或后半个月。“Harvest Moon”可能在9月7号到10月7号之间的任意一天出现。史蒂夫万德的歌《I just called to say I love you》有一句歌词是这样的:“No harvest moon to light one tender August night”这是一首好听的歌,卖出了几百万的唱片,但是按照资料的记载,Harvest Moon是不可能出现在八月的。

150 今天的许多风俗仍然用阴历来定宗教节日和一些严肃事件的时间。中国人,印度人,犹太人,穆斯林和其他一些种族的人仍然在用阴历。拿穆斯林的斋月为例,它是第一眼看到娥眉月的时候开始,到下一个娥眉月为止。同时犹太人的盛大节日逾越节甚至是今天的复活节也由月亮决定。复活节的日期每年都不同,但是总是在春分和第一个满月后的第一个星期天。复活节和逾越节通常在一年中的同一时间到来。

151 用望远镜观察月亮最差的时间就是满月的时候。满月很浪漫,但是当用望月经观测的时候却很令人失望。当满月的时候,月亮表面的中心地带正在经历正午(被太阳照出的影子最短)。因为没有阴影把月球的地形显示出来,所以月球的表面几乎没有什么特征。用望远镜观测月亮的最佳时期是靠近上弦月或下弦月的时间的时候,那时候月球坑和环形山呈现出浮雕式的效果。尤其是沿着月球平坦的边缘,它们将投出很显著的长长的影子。

152 月亮整晚都在天上的理念一个月只出现一天。这个夜晚就是满月的那个夜晚。大部分时间我们只能看到月亮的一部分,而且四分之三个月是这样的。在月相是新月的时间的附近,天上根本看不到月亮。如果你在任意晚上的任意的时间出去,你将有只有一半的可能性能找到月亮。

153 有两种“蓝月亮”。从一个满月到下一个满月的时间是29.53天。这就意味着除了2月份,如果满月发生在一个月的最开始,我们就将在这个月里看到第二次满月。一个月里的第二次满月就叫做“蓝月亮”。平均来说,蓝月亮两年半到三年出现一次。所以如果你想知道“once in a blue moon”的事件的频率,两年半到三年的时间就是你答案。当然,“蓝月亮”不是看起来是蓝色的,它只是个名字而已。那么月亮能有一个蓝色的影子吗?答案是肯定的。生火出来的烟和火山爆发时喷出来的烟都可以散射月亮上来的红色和橙色的光,这样月亮看上去就穿上了蓝色的外套了。

154 月球绕地球转的轨道不是一个规则的圆。像所有其他的天体,月球的轨道是一个椭圆。在历时一个月的轨道中,它与地球间的距离在221460到252700英里之间变化。近地点和远地点在轨道上缓慢的移动,所以的月相不是与一定的距离有联系的。所以,有的满月的时候,月球离地球近些;有的新月的时候,月球离地球近些。一套精心拍摄的关于月球的照片显示月球的大小在随距离发生变化。

155 月食的原因是什么?月食发生在地球,月亮和太阳在一条直线上,并且地球处在它们中间的时候。当月食发生的时候,月球正好通过地球在空间投下的影子,并且我们看到这个影子缓缓的从月球表面爬过。所以月全食只有在满月的时候才出现。,但月全食不是每个满月的时候都发生。这是因为月球绕地球转的轨道与地球绕太阳转的轨道有一定的夹角。这使得一些满月的时候,月球刚好从阴影的上面或下面通过。

156 月食的现象证明了地球是圆的。地球上不同纬度的人可以看到相同的月食,并且可以看到地球投在月面上的影子是圆的,尽管在不同纬度的人在月食时看到的月亮在天空的不同位置,但这种情况说明地球只可能是圆的而不是平的。实际上这个争论早就在公元前350年的时候被古希腊哲学家亚里士多德证实了。在哥伦布时期,除了哥伦布每个人都相信地球是平的。

157 月食可以有全食和偏食。地球的影子由全黑的本影区和灰色的半影区组成。当月球全部进入本影区的时候,月全食就发生了。如果月球只有一部分进入了本影区,那么将发生月偏食。当月球进入了半影区的时候,也将发生月食。只不过半影区比较微弱,效果不太明显罢了。

158 当月食发生的时候,地球同一边的人都能看到。因为地球上一半的地区在黑夜的时候在任何时间都是黑的,当月球进入地球影子要发生月食的时候,地球上处于黑夜的那个半球都面对着满月。所以,只要天气允许,成千上万的人都能在同一时间看到月食。

159 你很容易就能想到可观测的月食比它们实际发生的时候少。除非你故意满世界的跑,在正确的时间到达正确的地点。否则你看到的月食的次数比它实际发生次数要少。因为月球在进入地球的影子要发生月食的时候,你必须在地球上是黑夜的那个半球才可能看到月食。所以有时月食发生时我们处在黑夜,这样我们可以看到;而有时我们正在白天看不到。这意味着地球上另半边的人代我们享受了一次月食。

160 有些时候月食很暗,有些时候很亮甚至是有颜色的。在一些情况下,月全食会很暗,以至于在天上我们根本看不到它。但有些时候它是可见的,甚至是它在通过本影的中心区域时。那时它呈现出红色或者古铜色。这些现象与月球无关,而与月食发生时地球大气的状态有关。阳光穿过环绕地球的大气照到月球上,地球的大气散射掉太阳发出的蓝光和紫光而允许红光和橙色光通过,它们照到月球的表面上,其中的一部分再被反射到地球上,所以全食始的月亮有时看起来像个缓缓燃烧着的灯笼。在大型火山活动的时期,地球的大气中就有大量的灰尘和烟,这些颗粒吸收所有的太阳光,所以它们能使月全食时的月亮看起来很暗。

161 月食可以持续很长时间。当月亮只有一部分经过本影区的时候,这使得月食是一个相当短的过程。但是因为地球本影的直径是月球直径的两倍还多,而且半影区也在本影区旁边,所以月全食从开始到结束可以长达五小时(全部在本影区可以持续2小时)。

162 观测月食是安全的。不像是观测日食,月食的观测不会伤害你的眼睛。毕竟看满月是安全的,而且它很久以前就被无数对恋人们凝望过。月球通过地球的阴影,很少的光能射到你的眼睛里。双眼和望远镜改善了观看月食的效果,并且有时使处在地球阴影里月亮呈现出的细微的颜色。

163 潮汐由太阳和月球引起。月球引起了潮汐,这是普遍的观点。但实际上,太阳在其中也扮演了角色,虽然只是很小的影响。尽管日地距离远大于地月的距离,但太阳的巨大的质量仍然产生了显著的引力影响。

164 每天发生两次潮汐。在地球上同一点每天发生两次潮汐。这是因为月球使地球升起两个大水球——一个面对着月亮,另一个正好背对着月亮。地球在这两个潮汐球下旋转,每转一次产生两次潮峰。在两个“水峰”正中间的地方有两个相对应的槽,形成两个低潮。所以,在高潮中间与之相对应的低潮每天也伴随出现。高潮和低潮的出现的次数每天都会有一些改变,因为月球一直在自己的轨道上前进。当月亮升到很高的时候,每天都会提前一点。

165 面朝月球方向的潮汐球很好理解,但在相反方向为什么会有潮汐球有些令人费解。理解为什么在相反方向会有潮汐球的关键在于是什么引发了潮汐。大多数人认为月球的引力引起了潮汐,但是这不完全正确。真正的原因是因为月球对地球前面和后面引力总量上的不同造成了潮汐。月球对地球的引力作用与地月之间的距离有关。地球上的近月端比远月端距离月球近8000英里。这就意味着月球对地球的近月端的引力最大,而对远端的引力最小,地球中间的部分受的力在最大力和最小力之间。月球把地球面向它这边的水向自己的方向吸引,形成了面向月亮的潮汐球。下面是一个很有意思的地方,就是月球对地核的拉力作用比对远端要强,所以地核就被拉向远离远月端的水体,这样就形成了第二个潮汐球。

166 涨潮和落潮是宇宙的拔河比赛。当月球,地球和太阳拍成一条直线的时候(这时是满月或者是新月),月球和太阳在同一条直线的相反方向吸引着地球,这样的作用增强了潮水,叫做涨潮。在地球上看,当月球和太阳之间呈直角关系的时候,它们互成角度的引力使得潮水减小,这叫做落潮。

167 尽管影响潮汐的主要是月球,但认为月亮也会使人类产生潮汐,并且影响人类的行为是错误的。理解这个经常被人们误解的理念的关键在于潮汐是月亮对近月端和远月端的作用力不同产生的。对于地球来说,这个引力上的差异会很明显,因为地球的直径差不多只有8000英里,所以近月端比远月端距离月亮要近8000英里。对于人类来说,身高平均不到6英尺,大约只有1英尺宽。所以对你从头到脚的影响,左肩到右肩的影响都是微乎其微的。人体内部的力是这个吸引力的好几百万倍,所以察觉不到月球对人的作用。

168 但是真的没有证据证明月亮从一个满月到下一个满月的时间与人的生理周期没有任何关联吗?是巧合而没有影响。毕竟很多的物种都显示出生理周期,但是只有一些与月相的变化周期相近。并且对于人类的生理周期,每个人都有显著的不同。更进一步说,每个女人的月经周期都和其他大多数女性不同。所以也许一些女性看起来月经期与月相的变化有关,但大多数都不是这样的。

169 许多产科的大夫和护士都声称出生率和一胎多生在满月的时候都明显上升。这是一个有趣的事情,并且你可以对此进行实验来看看是否是这样的。在数年前的一次研究中,加州理工大学的天文学家乔治阿贝尔博士决定找出答案。过去的几年中他查看出生记录并且记录月相变化。那么结果呢?无论如何也没有关联。看来人类是一种有趣的动物。

170 一些人提出在满月前后的几天是暴力犯罪和不正常行为的高发期。同样的,运用大量数据研究的时候,大多数关于这种情况的科学实验显示这其中并没有什么关联。在这种情况下,我们必须区别月亮真正的影响和人们乐于相信月亮对他们行为确实起作用的影响。简而言之,如果一个人非常相信满月对他或她的行为有强烈的影响,那么他或她的行为就非常可能存在一些异常。还有一点非常重要,就是我们要区别月亮的力量和人类意识的力量。一个伟大的哲学家如是说:我们看到一种现象,它就是我们自己。

171 月球很可能是地球被空间中的巨大物体碰撞后形成的。在我们了解板块构造论(大型地壳的运动)之前,一些人注意到,月球和太平洋的大小差不多,并且开始推测月球可能就是原来地球上的这个部分。其他人推断月球于早期太阳系的其他地方形成,在靠近地球的时候被地球俘获。今天掌握的最普遍的理论则认为在太阳系的早期,一个火星大小的物体与地球发生了一次猛烈的碰撞。物质被驱散,并在地球周围形成了一个环,最后结合成了月球。但那个时候的地球仍处于熔融的状态。

172 月球在过去经常受到撞击。月球的历史很悲壮!月球由气体云和尘埃在46亿年前构成。当月球固化的时候,小型的空间碎片不停的被吸入。在39亿年前到42亿年前的这段时间中,这个大碰撞时期产生了我们今天看到的月球表面的坑。38亿年前,月球中心的放射性物质引起了内部的加热,并且使月球变成熔融状态,引发了月球表面的火山爆发。熔岩流到月球表面,它们流向地势低盆地,形成了月海。31亿年前,火山活动期过去了,熔岩固化了。除了偶然的流星碰撞,月球就变成了我们今天看到的样子。

173 月球内部是多块状的。当飞船第一次被送到空间去环绕月球的时候,科学家们注意到飞船在特定的点被意外的减速或加速。科学家们当即推测速度的变化是由于大密度的流星体碰撞月球并且深入了熔融状态的月球。高密度的地方在它的周围产生了更强一些的引力,这样飞船就被加速了。对月球探测器运动的认真计算使得科学家们可以准确的描述出月球内部看不见的部分的质量分布。

174 月球的内部还可以通过阿波罗宇航员留在月球上面的测震仪来进行研究。近10000次的月震被探测器记录了下来。一些是因为物体高速撞击月球引起的,但绝大多数还是因为地球潮汐力引发的月球内部的变化。大部分的月震发生在月面以下400-750英里。在这个深度下面是大多数科学家认为还处于熔融状态的月核。在月震区的上面是月球的覆盖物和月壳。月壳的平均厚度只有45英里。

175 先后一共有12位宇航员在月球表面行走过。只有12个人在另一个世界留下过脚印。他们每两人一组,共6组,通过阿波罗计划11到17驾驶飞船在月球降落。本来会有更多的着陆计划,但是它们被美国国家航空和宇宙航行局(NASA)取消掉了。不走运的阿波罗13只绕着月球转了几圈而没有成功的着落,像有名的同名电影中描述的一样。一些苏联在冷战时期保密的资料表明:苏联也曾尝试把宇航员送到月球附近,但由于各种原因,这些计划在实施前都夭折了。

176 宇航员总共从月球上带回了381千克(840磅)的物质。这些物质尺寸迥异,大到人的头颅,小到尘埃颗粒,并且来自月球上从平原到山地的广袤地域。带回的岩石中,最年轻的只有31亿岁,而最老的已有44.2亿岁,接近太阳系自身的年龄。

177 月球上岩石的年龄一般比地球上的大。月球在31亿年前地质已经不活跃了,许多区域已经不再活动。与之对比,那时地球上火山仍十分活跃,地壳运动直到现在还未停止。因此,地球上的岩石年龄大都远小于30亿年,月球上的岩石年龄大都在40亿年左右甚至更多。这样一来,研究月球上的岩石,而不是地球上的岩石,可以使我们了解太阳系早期的历史。

178 从月球上带回的岩石与地球上的岩石之间的异同。从月球上带回的岩石的类型都是地质学家所熟悉的。在阿波罗宇航员探测的谷底和高地上,找到了角砾岩,即不同类型的岩石在压力作用下“焊接”在一起的混合物。在谷底找到的岩石多是玄武岩,一种含有金属和硅酸盐的颗粒状岩石。
分析月球的岩石可以得出:虽然月球岩石样本中不含水,而含有大量铀、钍等地球上的稀有元素,但地球和月球在化学成分上是相似的,至少在表面上是的。也许有一天,在月球上采矿从经济上来看是可行的。

179 月球表面重力加速度是地球表面的六分之一。因为质量远小于地球,月球表面的重力加速度也远小于地球。一个在地球上重100磅的人在月球上重还不到17磅,这是由于月球对人的拉力是地球对人的拉力的六分之一。宇航员利用一种漫步兼跳跃相结合的方法来使自己在月球上尽快的移动。如果不是身上宇航服的影响,他们能够跳得比地球上高六倍,远六倍。让运动员们穿上灵活的服装,在月球上举办奥林匹克运动会,一定会被录入吉尼斯世界纪录!

180 在月球上从同一高度放下一把铁锤和一片羽毛,他们将同时着月。如果你现在在身边做这个小试验,很明显,铁锤先着地,因为羽毛表面积与重量之比远大于铁锤,它在下落时受的空气阻力使羽毛减速快。在月球上,没有空气的存在,铁锤受的力比羽毛大,但这个力正好使惯性大的铁锤具有与惯性小的羽毛一样的加速度。惯性取决于物体质量的大小,是表征使物体运动或静止的难度。例如一辆凯迪拉克车的质量比曲棍球大,使凯迪拉克从0km/s加速到60km/s远比曲棍球难,再使它停下也比曲棍球难。虽然月球上铁锤受的力比羽毛大,但这只能使具有和羽毛一样的加速度,因此铁锤和羽毛将同时着月。

181 从月球上看地球,将会看到类似月相圆缺变化的“地相”。与从地球上看见月相变化的原因一样,从月球上看地球,地球也会有“地相”变化。而地相与月相正好互补。换句话说,当我们看到满月时,月球上的宇航员将看到新月状的地球;当我们看到四分之一月亮时,宇航员将看到四分之三的地球。当然,从月球上看到的地球比从地球上看到的月亮大四倍。

182 月球正逐渐远离地球。虽然月亮围着地球转,但它以每年一英尺的速度远离我们而去

183 太阳是一颗十分普通的恒星。太阳只是浩瀚宇宙中无数恒星中的一颗,很多恒星与太阳类似,但也有一些恒星较之太阳而言或大或小,或冷或热。总之太阳是恒星中适中的一颗。

 

184 太阳从东方升起,从西方落下,这样的情况一年只有两天。问一个人早上太阳从哪儿升起,他或者她通常会回答:从东方升起。同样他或者她通常也会说:晚上太阳从西方落下。事实上,一年中只有两天,太阳是从正东方升起,从正西方落下,即春分和秋分。从春分到秋分,生活在北半球的人看到太阳从东偏北的地方升起,从西偏北的地方落下。在夏至时这种现象尤为明显,太阳从东偏北最大的方向升起,从西偏北最大的方向落下。从秋分到春分,生活在北半球的人看到太阳从东偏南的地方升起,从西偏南的地方落下。在冬至时这种现象尤为明显,太阳向南偏离得最远。生活在南半球的人看到的情形与我们正好相反。

185 太阳在黄道上运动一周的过程就是我们经历一年的过程。正如一年中太阳的升降方向不断变化一样,每天同一时刻太阳在天空中的位置一年中也不断变化。夏至日,当太阳从东偏北最大的方向升起,从西偏北最大的方向落下,太阳在天空中走过了一年中最长,最高的轨道,因此夏至日是一年中白天最长的一天。相反,在冬至日,当太阳从东偏南最大的方向升起,从西偏南最大的方向落下,太阳在天空中走过了一年中最短,最低的轨道,因此冬至日是一年中白天最短的一天。在春分和秋分日,太阳走过了长短,高低适中的轨道,因此这两天昼、夜一样长。

186 春分和秋分是由单词“equinox”翻译过来的。“equinox”来自拉丁语,意思是“相等的夜晚”。现在的意思与此略有不同,它也用来指一年中昼夜相等的那两天。

187 夏至和冬至是由单词“solstice”翻译过来的。“solstice”来自拉丁语,字面意思是“太阳停止不动”。这需要解释一下,每个人都知道太阳不可能在天空停止不动,这里的“solstice”是指这样一个现象:每年从冬至到夏至,太阳一天内在天空中的轨迹越来越长,越来越高,
到夏至时,太阳在天空中的轨道达到最长,最高,即太阳往北的运动趋势停止了。与此类似,每年从夏至到冬至,太阳一天内在天空中的轨迹越来越短,越来越低,到冬至时,太阳在天空中的轨道达到最短,最低,即太阳往南的运动趋势停止了。

188 许多文明都与太阳在天空中的位置和轨迹密切相关。在索尔兹伯里平原上,在新石器时代竖立的史前巨石柱至今已有三千多年的历史。今天,这些史前巨石柱仍然十分准确的标志出太阳在分点和至点升起及落下的方向。一千年前,有个本土的美洲人定居点科胡基亚,在密西西比河岸靠近今天圣路易斯的地方。今天科学家在那里的地面上发现这儿曾有一圈木桩。直到今天,霍皮人(美国亚利桑那州东南部印第安村庄居民)和安第斯山脉的土著人仍用平顶山和山峰记录下太阳升起及落下的方向。他们之所以这样做,实际和精神上的原因都有。太阳在天空中位置的变化即反应了天历,又告知人们何时耕种,何时收割以及何时举行重大的宗教仪式。

189 太阳的轨迹在天空中的变化是由于地球自转轴的倾斜造成的。当地球绕太阳公转时,地轴始终与轨道面保持倾斜。在夏至日的北半球,倾斜轴偏向太阳,因此太阳在天空中的轨道达到最高。六个月后,在北半球,倾斜轴偏离太阳,太阳在天空中的轨道达到最低。而在春分和秋分日,倾斜轴即不偏向太阳又不偏离太阳,所以太阳在天空中的轨道高低适中。

190 以地球为标准,太阳比地球大的多。我们见到的太阳,直径有864,000英里,如果把太阳比作一个金鱼缸,则需要1,000,000颗地球大小的大理石才能填满。

191 太阳的化学成分十分简单。太阳包含了宇宙中所存在的大部分元素,但太阳主要是由最简单的元素氢组成。实际上,氢和氦组成了太阳质量的99.9%,其它的氧、碳、氮、铁等元素只占0.1%。

192 我们见到的太阳的表面实际并不是一个面。在我们看来,太阳似乎有一个固体的表面,并且有一个可测的边界。真实情况是:太阳是一个由气体组成的球体,没有固体的表面。我们看到的边界,只是由于在那儿,太阳气体的密度下降到使光透明的程度。在这个密度之上,太阳是不透明的,因此我们看不到太阳内部。虽然我们现在了解到这些,但天文学家仍然把这一不透明的边界当作太阳的“表面”,称作光球层。顾名思义,在光球层内,太阳放出的光子可以最终到达我们的眼睛。

193 太阳中心看起来要比边缘亮。这一现象称作暗晕,是由于我们看的太阳中心比边缘更厚,并且温度也更高。

194 太阳的颜色可以告诉我们它的表面温度。如果我们把一根铁丝伸进火炉里,烧几分钟
后拿出来,会发现它发出暗红色的光。此时测量它的辐射温度,大约5,000华摄氏度。如果我们把它放进火炉多几分钟,再拿出来,发现它发出亮黄色的光。此时测量它的辐射温度,大约11,000华摄氏度。此时铁丝的颜色与太阳十分接近,太阳表面的温度也大约是11,000华摄氏度。与此类似,其它恒星的颜色也暗示出各自的表面温度。如红星温度较低,蓝、白星温度极高。

195 太阳表面是有斑点的。望远镜观测的图像显示,太阳的斑点好像镶入水泥地上的鹅卵石一样。这是因为我们看到许多气体单元的顶部,这些亮的区域与德克萨斯州大小相仿,是热气流喷射上升的区域。而暗区域是冷气流下沉的区域。因为表面斑点的现象与米汤相似,我们又称其为粒状亮斑。

196 太阳的斑点聚成一团。通过研究太阳表面的大尺度运动,我们得出:斑点聚成巨大的、粗糙的多边形区域。物质常从区域中心涌出,向各个方向流动,在边缘又沉落。该区域常延绵到20,000英里,我们又把它叫作超大斑点。

197 太阳表面还有黑子。中国的天文学者早在公元前两个世纪就记录下太阳表面的黑子。而在西方,1800年后才由伽利略通过望远镜观测到黑子。我们今天已经知道,黑子是太阳表面有强磁场限制和热气体减速的地方。气体减速导致温度下降,这一区域就更暗,这是对比而言的。如果我们把黑子挖下来,放到夜空中,它将比最亮的星还亮。黑子中央黑影部分被称作暗影,黑子周围较浓的浅灰区叫作半影。

198 黑子的出现、消失有周期性。在十九世纪中叶,一个业余天文学家Samuel Heinrich Schwabe 发现太阳表面的黑子数不是常数,而是由少到多又到少,有个周期。平均下来大约11年一个循环。最初,黑子出现在每个半球纬度30度的地方,接着黑子增多,向赤道蔓延。最后黑子变少,在纬度5度的地方消失,如此周而复始。最近一次的黑子最多时是2001年,预计下一次在2012年。

199 黑子成对出现。因为黑子是自然磁场形成的,而自然界的磁场成对出现,因此黑子也成对出现。若一个黑子是正极,那么另一个为负极,正如磁铁的两端。我们可以把黑子对看作放在太阳表面的蹄形磁铁。

200 黑子常聚成一团,整体上表现出磁性。这些团簇可以由两对或更多的黑子组成。如果团簇的一端是一极,相对的一端是另一极。如果太阳的北半球是正极,则在南半球的一端为负极。

201 太阳的磁极在每个黑子周期颠倒一次。每11年,太阳的两极磁性颠倒,整个太阳的磁性也随之颠倒。因此,从磁性的角度来考虑,黑子周期应为22年而不是11年。

202 黑子可以很大。很多黑子达到了地球大小,黑子团簇能在太阳表面绵延100,000英里。

203 部分人认为太阳黑子数量的变化能影响地球的气候。天文历史记录显示:从1645到1715年间,黑子数量相对较少。气象记录显示:同一时期欧洲大部分地区的冬天更长。这能说明问题吗?另有一些人,据称也找到树木年轮与太阳黑子周期的相关性。

204 最近科学家似乎发现了太阳黑子对气候的影响。斯坦福大学的Sallie Baliunis博士找到了依据:太阳黑子数与太阳释放出的总能量有关,进而影响到地球的气候。值得一提的是统计数据有偶然性,并被诸多因素所影响,因此不能提供直接的证据。当提到诸如太阳,地球气候等复杂问题时,统计数据都应该被深入研究。

205 日震。最近我们发现太阳表面的震动与闹铃或铜锣的震动相似。太阳表面能以几百天文学家了解了太阳的内部,类似于通过研究地震来研究地球内部结构。为了继续研究太阳的震动,1995年建立了全球联合观测震动网络工作组,用分布在全球的6架望远镜连续的观测太阳的震动。

206 太阳表面经常发生强烈的爆炸。这种爆炸就是我们看到的耀斑,能在短短几秒内释放出上百万颗原子弹的能量。当耀斑发生时,太阳的大气层会被吹出一个巨大的洞,并发出十分强烈的光、电磁波,高能X射线及数以百亿计的带电粒子,这种现象被称作太阳风。当太阳黑子最活跃时,耀斑和太阳风也发生的最频繁最剧烈。

207 耀斑能引发地球上一些有趣的现象。从太阳吹向地球的带电粒子在几天内到达地球,这些粒子被地球磁场俘获,最后以几万英里每秒的速度坠向大气层,其结果产生了地磁暴;干扰地球的磁场,使指南针不停摆动,对广播也有影响;使输电线的断路开关受损;使地球两极出现极光。

208 我们所见的南、北极光是地球大气与太阳大气接触的结果。当太阳风吹出的带电粒子到达地球时,它们与地球周围油炸圈饼状的巨大磁场相作用,地球磁场使这些粒子改变方向并引导它们落到地磁场的南北两极,以接近光速的速度与地球的外大气层,撞向我们头上数英里的氧和氮原子,当碰撞发生时,这些空气中的原子将会发光,这即是我们说的南极光和北极光。

209 极光有不同的种类和颜色。有时极光看起来是无定形的粉红色,在天空中一闪而过;有时极光看起来像窗帘或挂毯,在空中慢慢起伏,随风飘荡;有时极光仿佛是从高处喷出的一条辐射线。极光可以是白色、暗红色、桔黄色、绿色或蓝色,这取决于带电粒子自身的能量及撞击的空气中原子的种类。极光有时仅仅持续几分钟,有时却持续一整夜,这取决于太阳风的强度及持续时间的长短。

210 民间传说给出了极光颜色的许多解释。一些爱斯基摩部落认为极光是他们已故的祖先的灵魂在空中奔跑,用海象的头骨玩一种球赛;在古老的中国,极光的扭曲好像天上的龙在打斗;维京人认为极光是黑暗天空中的火炬发出的光,指引新的灵魂到达瓦尔哈拉殿堂。

211 一年中没有最适合看极光的时间。极光不会在一年中的特殊季节发生得更频繁。因为它是由太阳风引起的,所以极光的周期和强度与太阳黑子的活动周期相关。当太阳黑子活跃时,极光会更亮、发生更频繁,当太阳黑子不活跃时,极光出现的更少。下一次的黑子活跃期大概是2012年,届时将可能有南、北极光。

212 南北极光并不是在南北极方向发生更频繁。从太阳发出的带电粒子并不是被准确的引导到地球两极,而是围绕地磁的两极成环带状,极光就经常发生在这一环带上。以北极光为例,包括阿拉斯加,加拿大北部到接近东南部的地区及北太平洋,还有斯堪的纳维亚半岛的北部,俄罗斯北部。从人造地球卫星上看,极光像是围绕地球的一条光带,有极光的区域能膨胀或压缩,但在美洲大陆却不一样,在加勒比海地区等低纬度地区甚至也看到了极光,但这种现象毕竟很少。南极光经常发生在南极洲大陆外的环带上,因此不易被看到。

213 极光经常在两个半球同时发生。太阳风吹出的带电粒子撞击地球大气层时,他们受磁场力作用,在南北磁极间运动。这些粒子的速度极快,当他撞到阿拉斯加上空的氧原子,下一秒就已经撞到了南极洲上空的氧原子。因此,极光常常同时出现在两个半球,并且具有相同的形状。

214 极光发生在离地面50至100英里的空中。正是在这样的高度,从太阳发出的带电粒子最容易与大气中的氧和氮原子发生碰撞。从太空中看,这一说法是很有依据的。从宇航员偶然拍下的照片上看出,极光像是挂在地球上50英里高的窗帘。

215 一些其它的行星也有极光。一些有强磁场和大气层的行星也有极光。哈勃空间望远镜的图片显示,土星和木星有极光。旅行者探测器的数据显示,海王星、天王星很可能也有极光。

216 太阳上的“一天”时间不一样。与地球一样,太阳也有自转,但跟地球不同的是太阳不是固体,因此不同的纬度转速不一样,在太阳赤道,转一圈要25个地球日。纬度越高,转速越慢,在靠近两极的地方,转一圈要约31个地球日。在地球上,在你南面的地点无论多久都在你的南面,但在太阳上,这不成立。越靠近赤道,转的越快,就会滑向东边。这是流体的情形。

217 太阳像是空间的一块巨大的磁铁。与地球类似,太阳内部好像有一个巨大的磁铁,这磁铁产生了巨大的磁场,在太空中绵延数亿英里,并控制周围热气体的流动。每隔11年,在黑子活动周期的开端,磁场南北极会颠倒一次,而太阳自转轴保持不变。

218 太阳也有大气层。在太阳可见表面或光球层之外,有一个炽热的带电气体组成的大气。大气的内层叫色球层,因为这一层有粉红的颜色。色球层有7000英里厚,并且比光球层热,温度在11000华摄氏度到30000华摄氏度之间。

219 从望远镜中看去,色球层像是燃烧的大草原。色球层会射出巨大的热气流,叫日珥,横跨500英里,高达1000英里。日珥数以百万计,像是从太阳表面射出的火焰。太阳变化的磁场使由带电粒子组成的日珥像风中摇摆的麦穗。让人联想到燃烧的大草原的景象。

220 色球层之外是太阳的大气外层。这一层又叫日冕,是由色球层顶部的带电气体组成的纯白色区域。其内部是日珥从太阳表面升起的舌头状的燃烧气体的云,延展到数千英里。

221 天文学家用特殊的仪器去研究日冕的内部。这一特殊仪器就是食仪。它实际上就是一个用不透明的圆盘挡住光球层发出的强光的望远镜。这种仪器只能放在空气干燥,大气稳定的高山上。在这种环境下,科学家们看到了日珥的一部分。

222 日冕外部只能在更特殊的环境下观测。这儿的光线更加黯淡,只有当日全食中,月亮挡住了太阳光球层和日冕内部的光那一小会儿时间才能观测。这也是为什么天文学家对日食感兴趣的原因之一,让天文学家有机会研究太阳大气。

223 地球是在太阳的大气中“游泳”。在日全食中,我们发现太阳大气有太阳的数倍直径那么厚,几乎包含了整个太阳系,所以这些行星,包括地球,在公转时都是在太阳的大气层中运动。这一关系在南北极光现象中得以体现。

224 一部分日冕的温度达4,000,000华摄氏度。但你到那儿会被冻死。这好像自相矛盾。在此之前,我们必须先区别温度和热量。生活中我们常常把这两个词混为一谈,认为热量大就一定有更高的温度,但到了太阳大气层,这就不适用了。因为组成日冕的气体太稀薄了,比地球实验室里制造的真空还稀薄。
现在我们提到物体的温度,实际是指物体中原子或分子的平均运动速度,速度越大温度越高。但是热量是指物体原子和分子的总能量。既然太阳大气的气体如此稀薄,每立方米的原子很少,所以每立方米的热量也很少,尽管其中原子的速度很快,温度很高。因此尽管温度很高,但在那儿仍会被冻死。

225 太阳正在不断的消耗自己。恒定的粒子流从太阳中不断喷出,即太阳风,遇到耀斑时,太阳风会加强。这些粒子落到地球上,其它行星上,及相邻的恒星上。宇航员没有感受到太阳风是因为其中的粒子太细小了。

226 某一天,太空船会在太阳风里航行。预言家已经预见了薄的塑料口袋代替干洗袋的趋势。我们可以想象,由铝制的仅一个分子厚的太阳船将会足够大,足够轻,能利用太阳风来航行。作为兴趣阅读,Arthur C. Clarke的短篇小说《来自太阳的风》,这是关于从地球到月亮的第一次太阳帆船竞赛的故事。

227 太阳和它的行星是同时诞生的。他们是46亿年前一团巨大的气体和尘埃形成的。在内部,重力逐渐结束了物质的紊乱状态,在气团中心,温度逐渐上升,到达一定高温时,就形成了太阳。一些小物质团也形成了,并围绕中心转动,这就是行星及彗星、各自的卫星。

228 太阳经过46亿年,已经有了很多变化。通过研究其它恒星,天文学家发现太阳在几十亿年前比现在更冷,并且看起来呈桔黄色。早期的地球从太阳那儿得到的光和热要比现在少。经过几十亿年,太阳变成了现在的模样——一颗黄色的稳定的恒星。

229 太阳之所以稳定是因为它内部进行的是平衡反应。太阳每天是一样的(除了黑子数量),既不会变大也不会变小。这是由于贯穿整个太阳内部的平衡反应。重力是太阳形成的第一个因素,它使气体和尘埃坍塌。到一定时候,坍塌会停止,因为温度到达某一点时,太阳的核燃烧起来,产生巨大的热压力,与重力相平衡。现在,太阳内部每一点的压力与重力都平衡,因此太阳相当稳定。如果不是这样,地球上的生物不会这么繁荣。

230 太阳中心是相当热的。太阳表面温度不冷,它内部的温度更高,能接近3,000,000华摄氏度。

231 太阳是空中的大型核电站,辐射出能量。太阳通过核聚变反应辐射出大量能量,包括光线。地球上的核电厂是通过核裂变反应放出能量(如铀变为更简单的原子,并发出能量)。太阳是通过合并简单的原子而放出能量。科学家更喜欢进行聚变反应,因为聚变比裂变环保,不会放出放射性废料。但科学家们一直还没创造出能引发聚变反应的高温。

232 太阳创造能量是通过一个反应实现的。太阳通过熔合宇宙中最丰富最简单的氢原子成为氦原子放出能量。在太阳内部,每秒钟有6亿吨氢被转化为氦,4百万吨物质被转换为能量,按爱因斯坦质能关系E=m, E是放出的能量,m是损失的质量,c是真空中的光速,由于光速很大,损失的质量也大,每秒钟放出的能量是一个天文数字。这些能量到达太阳表面,以光和热的形式发射出来,即太阳辐射。

233 虽然太阳产生了巨大的能量,但它仍然遵守一个宇宙中的质量和能量守恒定律。这一定律是说在任何的物理过程中,质量与能量之和为常数,不管是蜡烛的燃烧还是恒星的辐射。太阳产生了巨大的能量,同时也失去了等价的质量。

234 太阳内部漆黑一片。虽然体太阳光十分耀眼,但它内部却不能产生光。因为太阳内部核反应产生的能量太高,是由伽马射线的形式传向外部,但人眼看不到伽马射线。所以如果我们能看到太阳内部,那将会是一片黑暗。
伽马射线传向太阳表面的过程中,逐渐变为可见光,到达光球层后,穿过宇宙空间最后进入我们眼睛。

235 一旦辐射离开太阳,将传播的非常快,但……一旦可见光到达光球层,将再8分20秒内穿过93,000,000英里到达地球。因为我们的宇宙十分空旷,没有阻挡。但太阳内部,对辐射是不透明的,太阳中心核反应产生的伽马射线要经过成千上万年才能从太阳内部传到光球层,并变为可见光。虽然最后93,000,000英里只要8分20秒,但最初的几万英里却花了很长时间。

236 太阳的保温系统比家里或办公室的更好。虽然我们不想住在太阳内部,但太阳的保温系统的确很不错。太阳内部的温度比表面温度高几百万度,而厚度大概50,000英里,这意味着在太阳每25英尺厚的温差比家里或办公室的更小。这样渐变的温差能使伽马射线传出太阳内部,但这一过程花费很长很长的时间。

237 在地球早期,太阳与现在有所不同。在3.5亿年前,地球上生命初开时,太阳与现在有所不同。从表面上看,太阳是浅黄色,比现在小8%到10%,亮度只有现在的70%到75%。此后太阳慢慢变大、变热、变亮,持续了3.5亿年,但比不上仅持续了一到两个世纪的“温室效应”。

238 今后50亿年,太阳仍然保持稳定。太阳以后可能会由于氢的燃烧比现在略大、略热、略亮,此后,地球会有很大变化。50亿年后,太阳的氦核越来越大,最后坍塌,燃烧成为碳元素,表层的氢继续转化为氦。氦燃烧反应产生的能量将把光球层外推,太阳变为一颗红巨星,吞并水星和金星,并到达地球轨道。太阳红色的表面依然,但会越来越冷。地球仍会被太阳的热量熔化。

239 太阳变为红巨星以后,还有更多的变化。太阳晚期,光球层也被推开,变成一圈气体和尘埃,又叫行星状星云。随着核反应的停止,太阳变为一颗地球大小的白矮星。太阳的直径将从现在的800,000英里变为红巨星时的200,000,000英里,再变为白矮星时的8,000英里。随着核燃料的耗尽,太阳逐渐冷却,由白依次变为黄、红,最后成为一颗暗星。我们后面还会详细讨论恒星的演化。

240 什么导致日食?当地球,月亮,太阳再一条线上,月亮又在地球、太阳中间时,就形成了日食。如果我们在合适的地方,就会看到月球的影子滑过地球。

241 日食时月球总是新月,但并非每次新月都有日食。否则每月都有一次日食。如果月球的轨迹比太阳高一点,月球的影子将会错过地球,没有日食发生。日食主要依赖于地球、月球的轨迹与太阳的位置。

242 日食分日偏食、日全食、日环食。月球仅仅遮住太阳的一部分,就是日偏食;月球遮住了整个太阳就是日全食;由于月球轨道是椭圆,离地球有时近,有时远,当月球离地球较远时,只能遮住太阳的中间,太阳光球层仍然可见,像一个金色的环,这就是日环食。

243 月全食能被住在地球同一边的人看到,但日全食的见证者却十分幸运。日偏食能被地球上大片区域的人看到,但日全食只有很窄的一个带能看到,叫全食带。月球的影子划过地球,从西端开始,以1000英里每小时的速度滑过地球,最后从东边消失。这一片区域就是全食带。只有在全食带的人才能看到日全食,其它的人只能看到偏食甚至什么也看不到。

244 日食是令人敬畏的自然景观。如果你有幸见到了日全食,你将终身难忘。全食从新月状开始,当月球接近太阳时,地面明显变暗,并有奇怪的色彩。全食前,光带和暗带竞相追逐,光球层还未被遮挡。全食只是一瞬间,由于太阳白色的大气日冕,使太阳看起来像天上的黑洞。天空中的亮星和部分行星可见。月食来也匆匆,去也匆匆,持续时间短,但我们一定会记得我们曾在月亮的影子下。

245 日全食持续时间不同。日全食持续时间取决于你所处的位置和月球所处的位置。月球轨道是椭圆而不是圆的,就是说月球离地球有近有远,看起来的也时大时小。如果全食时月亮离地球近,月球看起来比太阳大一点,持续时间约1分半,如果全食时月亮离地球近,月球看起来不比太阳大,因此出现了日环食。如果你打算去看日全食,尽可能在全食带中部,因为那儿日全食时间会持续更长。

246 天文学家想到了一些方法来延长观测。一些天文学家与自然抗争,他们在飞行器上安装天文仪器,跟着月球的影子飞行,这样,他们人为的延长了日全食的时间一个多小时。

247 地球是除冥王星以外能看到日全食的唯一行星。我们能看到日全食完全是巧合:比太阳小400倍的月球正好比太阳离我们近约400倍,故太阳与月球在天空中看起来一样大,这为日全食创造了可能性。在太阳系,除了冥王星外,没有其它行星能看到日全食,因为这些行星的卫星不是太小,就是离行星太远,不能完全挡住太阳。因此我们看到日全食这一壮观的自然景象是自然造就的。

248 对古代人而言,日食是十分可怕的。如果你能了解太阳对粮食耕种、日常生活的影响,你就会关心天上的太阳为什么突然不见了。中国古代认为日食是因为一条龙吞掉了太阳,其它的文明也认为这是不祥之兆,有许多“解决方法”:打鼓、朝天空射箭、拿物或人祭祀等。

249 日食能被准确的预言。我们知道地球和月球的轨道,也知道太阳的运动,我们预言日食能准确到分钟。日食有周期性,如遵循沙罗周期6585.32天,其间,共有71次各种日食发生,周而复始,但地点有所不同,每个沙罗周期有0.32天余下,这时地球又自转了117度,这可以用来修正,但不是很准确。正因为地点不同,所以尽管日食有周期,但很多人不知道,所以必须全球调查日食,而不是看一个地点的日食记录。

250 据传,曾经有一次致命的日食报告错误。这是说公元前二世纪的两个中国天文家由于一些原因没报告日食。那时的中国帝王认为自己是天子,十分重视天象,认为那是上天给的暗示,因此他请了一批天文家定期观测天象。那时彗星和流星不能被预言,但日食是可以预测的。两位天文家没有告诉帝王日食这一重大天象的发生,帝王盛怒,将两人斩首示众。那时的天文学家比现在危险得多。

251 日食期间,太阳不会发出任何特殊的射线。日食的观测常常被曲解,太阳不会预知地球上日食的发生,不会发出其它的射线,因此日食时待在室外并无害处。但看日偏食时应该凝视还是匆匆一瞥呢?日食时太阳光虽比平时弱很多,但如若直视,对眼睛还是有伤害,可能损伤眼角膜。人们由于好奇心,会凝视或斜视太阳。当然,日偏食还是很刺眼的,如果你看太阳久一点,没等你反应过来你的眼角膜已经受损。日食时眼睛受损不是因为太阳的异常,而是人们由于好奇而没注意保护措施。

252 安全看日食的几点注意事项。由于人们的误解,常常错过欣赏这一重要的天文现象,安全看日食有几点要注意:
无论日食发生与否,都不要用眼睛直视太阳;
不要用所谓的“墨镜”;
不要用“太阳镜”,甚至几个叠放也不行;
不要看太阳在镜子或水面的像;
用14号焊接镜看太阳;
用有特殊涂层的迈拉镜观看,这可以从著名的天文馆或科学博物馆获得;
构制一个孔式投射器。
以上的建议能方便大家看日食。

253 日全食的观测十分安全。只有在日全食时,我们才能裸眼看太阳。全食期间,太阳的几乎所有光线都被挡住了,只有日冕可见,而日冕的光亮仅相当于满月。所以这时的光我们可以接受。但是光球层的细小部分的光就足以伤害我们的眼睛。因此在日全食过程中还是有安全措施的好。

254 日全食中有些有趣的现象。如果你在全食带附近,注意中午天空中光线的变化。当太阳被渐渐遮挡时,天空不仅会变暗,还会出现奇异的色彩。温度会下降几度,会起风,鸟儿以为太阳下山了,准备栖息。

255 整个日全食中,月亮戴上了一条项链。当日全食开始时,我们看到太阳的光球层的光不断沿着月球边缘绕行,直至包围月球,这时,月亮看起来好像戴上了一条项链,边缘的亮光点叫做贝里珠。日全食结束时,现象相反,月亮从另一边消失了。