讲好长征故事:天文知识

来源:百度文库 编辑:中财网 时间:2024/04/27 21:23:44


天文知识
黑洞
有的天体的质量十分巨大,因而引力极强,没有任何东西能从该处逃逸,甚至光线也不例外。没有光线返回,眼睛无法看到物体,所以称之为“黑洞”。
黄道
地球上的人看太阳于一年内在恒星之间所走的视路径,即地球的公转轨道平面和天球相交的大圆黄道和天赤道成23度26分的角,相交于春分点和秋分点。
黄极
天球上与黄道角距离都是90度的两点,靠近北天极的叫“北黄极”。黄极与天极的角距离等于黄赤交角。北黄极在天龙座 与 两星联线的中央。
黄道带
天球上黄道两边各8度(共宽16度)的一条带。日、月和主要行星的运 行路径都处在黄道带内。古人为了表示太阳在黄道上的位置。把黄道分为十二段,叫“黄道十二宫”。从春分起依次为白羊、金牛、双子、巨蟹、狮子、室女、天秤、天蝎、人马、摩羯、宝瓶和双鱼。过去的黄道十二宫和黄道十二星座一致。由于春分点向西移动,两千年前在白羊座中的春分点已移至双鱼座,命名与星座已不吻合。
三垣
包括紫微垣、太微垣、天市垣。紫微垣包括北天极附近的天区,大体相当于拱极星区;太微垣包括室女、后发、狮子等星座的一部分;天市垣包括蛇夫、武仙、巨蛇、天鹰等星座的一部分。
二十八宿
二十八宿分:东方七宿,西方七宿,南方七宿,北方七宿。二十八宿又称为二十八星或二十八舍。最初是古人为比较日、月、金、木、水、火、土的运动而选择的二十八个星官,作为观测时的标记。“宿”的意思和黄道十二宫的“宫”类似,表示日月五星所在的位置。到了唐代,二十八宿成为二十八个天区的主体,这些天区仍以二十八宿的名称为名称,和三垣的情况不同,作为天区,二十八宿主要是为了区划星官的归属。二十八宿从角宿开始,自西向东排列,与日、月视运动的方向相同。
东方七宿
角、亢、氐、房、心、尾、萁;北方七宿:斗、牛(牵牛)、女(须女)、虚、危、室(营室)、壁(东壁)
西方七宿
奎、娄、胃、昴、毕、觜、参
南方七宿
井(东井)、鬼(舆鬼)、柳、星(七星)、张、翼、轸。
北方七宿
斗、牛、女、虚、危、室、壁
辅官或辅座
此外还有贴近这些星官与它们关系密切的一些星官,如坟墓、离宫、附耳、伐、 钺、积尸、右辖、左辖、长沙、神宫等,分别附属于房、危、室、毕、参、井、鬼、轸、尾等宿内,称为辅官或辅座。唐代的二十八宿包括辅官或辅座 星在内总共有星183颗。
宇宙速度
是指从地面向宇宙发射人造天体必须具备的初始速度。
第一宇宙速度
人们将7.9公里/每秒的速度称为“第一宇宙速度”,又称“环绕速度”,低于这个速度,物体就会在重力的作用下返回地球。
第二宇宙速度
如果我们把速度加大,直到11.2公里/每秒,这个人造卫星就可以不受地球吸引力的影响,而到太阳系内的行星际空间旅行。人们称11.2公里/每秒的速度为“第二宇宙速度”
第三宇宙速度
如果我们还想让人造卫星飞出太阳系,到其他星球去旅行,那就必须把速度加大到16.7公里/每秒,这个速度称为“第三宇宙速度”。
平年与闰年由于一回归年的天数不是整数,所以每年的天数是不一样的,有的是365天,有的是366天。一年的天数是366天的年份称为“闰年”,是365天的称为“平年”。“闰年”的二月比“平年”多1天,其他月份都是一样的。一般来说,能被4整除的年份是“闰年”.如果年份是整百的,则要能被400整除的才是“闰年”。
闰月农历与公历一年所包含的天数不同,公历一年大约有365天,农历一年有354天。为了使两者的一年的天数相同,所以农历有的年份要加一个月,增加的这个月叫“闰月”。因为公历的一年比农历的一年只多约11天,所以不能每年都加闰月,大约19年有7个闰月。
回归年地球绕太阳运行一周所用的时间叫回归年。一回归年为365天5小时48分46秒(合365.24219天)
小知识
距离地球最近的恒星——比邻星,四点二四光年。
地球赤道圆周长约四万零七十六点五九三八公里。
月球距离地球的平均距离三十八点四万公里。
月球绕地球一周,要二十七天五小时零五分四十三秒。
地球绕太阳公转一周为一年,要三百六十五天五小时零四十八分四十六秒。
地球自转一周为一天。“一天”的时间并不是24小时,而是23小时又56分钟。
月球圆缺变化的周期是二十九天十二小时零十四分三秒,就是农历的一个月。 太阳系所在的星系叫银河系。银河系像一只巨大的饼,宽约8万光年,中心厚约1.2万光年,恒星的总数在1000颗以上。
什么是星座
为了便于识别星星,古人将天球划分为许多区域,每个区域有若干个星星.人们把这些区域叫做星座,共有88个星座,每个星座都有惟一的名字。每一星座可由其中亮星的特殊分布而辨认出来。他们的界线大致是平行和垂直于天赤道的弧线。我国古代将星空分为三垣和二十八宿。
天上星星知多少
天上的星星可以说有无数个。但用肉眼能看到的并不像一般人想象的那么多。天文学家把用肉眼能看到的星星划分为七个等级。0等星最亮,6等星最暗。各个等级的星星数量分别是:0等星6颗;1等星14颗;2等星46颗;3等星134颗;4等星458颗;5等星1476颗;6等星4840颗,共6974颗肉眼可见的星。实际上一个人同时看到的还不到一半。

天文知识(2)
宇宙
公元2世纪,C.托勒密提出了一个完整的地心说。这一学说认为地球在宇宙的中央安然不动,月亮、太阳和诸行星以及最外层的恒星天都在以不同速度绕着地球旋转。为了说明行星运动的不均匀性,他还认为行星在本轮上绕其中心转动,而本轮中心则沿均轮绕地球转动。地心说曾在欧洲流传了1000多年。1543年,N.哥白尼提出科学的日心说,认为太阳位于宇宙中心,而地球则是一颗沿圆轨道绕太阳公转的普通行星。到16世纪哥白尼建立日心说后才普遍认识到:地球是绕太阳公转的行星之一,而包括地球在内的八大行星则构成了一个围绕太阳旋转的行星系—— 太阳系的主要成员。1609年,J.开普勒揭示了地球和诸行星都在椭圆轨道上绕太阳公转,发展了哥白尼的日心说,同年,伽利略·伽利雷则率先用望远镜观测天空,用大量观测事实证实了日心说的正确性。1687年,I.牛顿提出了万有引力定律,深刻揭示了行星绕太阳运动的力学原因,使日心说有了牢固的力学基础。在这以后,人们逐渐建立起了科学的太阳系概念。
在哥白尼的宇宙图像中,恒星只是位于最外层恒星天上的光点。1584年,乔尔丹诺·布鲁诺大胆取消了这层恒星天,认为恒星都是遥远的太阳。18世纪上半叶,由于E.哈雷对恒星自行的发展和J.布拉得雷对恒星遥远距离的科学估计,布鲁诺的推测得到了越来越多人的赞同。18世纪中叶,T.赖特、I.康德和J.H.朗伯推测说,布满全天的恒星和银河构成了一个巨大的天体系统。弗里德里希·威廉·赫歇尔首创用取样统计的方法,用望远镜数出了天空中大量选定区域的星数以及亮星与暗星的比例,1785年首先获得了一幅扁而平、轮廓参差、太阳居中的银河系结构图,从而奠定了银河系概念的基础。在此后一个半世纪中,H.沙普利发现了太阳不在银河系中心、J.H.奥尔特发现了银河系的自转和旋臂,以及许多人对银河系直径、厚度的测定,科学的银河系概念才最终确立。
18世纪中叶,康德等人还提出,在整个宇宙中,存在着无数像我们的天体系统(指银河系)那样的天体系统。而当时看去呈云雾状的“星云”很可能正是这样的天体系统。此后经历了长达170年的曲折的探索历程,直到1924年,才由E.P.哈勃用造父视差法测仙女座大星云等的距离确认了河外星系的存在。
近半个世纪,人们通过对河外星系的研究,不仅已发现了星系团、超星系团等更高层次的天体系统,而且已使我们的视野扩展到远达200亿光年的宇宙深处。
宇宙演化观念的发展在中国,早在西汉时期,《淮南子·俶真训》指出:“有始者,有未始有有始者,有未始有夫未始有有始者”,认为世界有它的开辟之时,有它的开辟以前的时期,也有它的开辟以前的以前的时期。《淮南子·天文训》中还具体勾画了世界从无形的物质状态到浑沌状态再到天地万物生成演变的过程。在古希腊,也存在着类似的见解。例如留基伯就提出,由于原子在空虚的空间中作旋涡运动,结果轻的物质逃逸到外部的虚空,而其余的物质则构成了球形的天体,从而形成了我们的世界。
太阳系概念确立以后,人们开始从科学的角度来探讨太阳系的起源。1644年,R.笛卡尔提出了太阳系起源的旋涡说;1745年,G.L.L.布丰提出了一个因大彗星与太阳掠碰导致形成行星系统的太阳系起源说;1755年和1796年,康德和拉普拉斯则各自提出了太阳系起源的星云说。现代探讨太阳系起源z的新星云说正是在康德-拉普拉斯星云说的基础上发展起来。
1911年,E.赫茨普龙建立了第一幅银河星团的颜色星等图;1913年,伯特兰?阿瑟?威廉?罗素则绘出了恒星的光谱-光度图,即赫罗图。罗素在获得此图后便提出了一个恒星从红巨星开始,先收缩进入主序,后沿主序下滑,最终成为红矮星的恒星演化学说。1924年 ,亚瑟·斯坦利·爱丁顿提出了恒星的质光关系;1937~1939年,C.F.魏茨泽克和贝特揭示了恒星的能源来自于氢聚变为氦的原子核反应。这两个发现导致了罗素理论被否定,并导致了科学的恒星演化理论的诞生。对于星系起源的研究,起步较迟,目前普遍认为,它是我们的宇宙开始形成的后期由原星系演化而来的。
1917年,A.阿尔伯特·爱因斯坦运用他刚创立的广义相对论建立了一个“静态、有限、无界”的宇宙模型,奠定了现代宇宙学的基础。1922年,G.D.弗里德曼发现,根据阿尔伯特·爱因斯坦的场方程,宇宙不一定是静态的,它可以是膨胀的,也可以是振荡的。前者对应于开放的宇宙,后者对应于闭合的宇宙。1927年,G.勒梅特也提出了一个膨胀宇宙模型.1929年 哈勃发现了星系红移与它的距离成正比,建立了著名的哈勃定律。这一发现是对膨胀宇宙模型的有力支持。20世纪中叶,G.伽莫夫等人提出了热大爆炸宇宙模型,他们还预言,根据这一模型,应能观测到宇宙空间目前残存着温度很低的背景辐射。1965年微波背景辐射的发现证实了伽莫夫等人的预言。从此,许多人把大爆炸宇宙模型看成标准宇宙模型。1980年,美国的古斯在热大爆炸宇宙模型的 基础上又进一步提出了暴涨宇宙模型。这一模型可以解释目前已知的大多数重要观测事实。
宇宙图景 当代天文学的研究成果表明,宇宙是有层次结构的、物质形态多样的、不断运动发展的天体系统。
层次结构 行星是最基本的天体系统。太阳系中共有八颗行星:水星 金星 地球 火星 木星 土星 天王星 海王星。 (冥王星目前以被从行星里开除,降为矮行星)。除水星和金星外,其他行星都有卫星绕其运转,地球有一个卫星 月球,土星的卫星最多,已确认的有26颗。行星 小行星 彗星和流星体都围绕中心天体太阳运转,构成太阳系。太阳占太阳系总质量的99.86%,其直径约140万千米,最大的行星木星的直径约14万千米。太阳系的大小约120亿千米(以冥王星作边界)。有证据表明,太阳系外也存在其他行星系统。2500亿颗类似太阳的恒星和星际物质构成更巨大的天体系统——银河系。银河系中大部分恒星和星际物质集中在一个扁球状的空间内,从侧面看很像一个“铁饼”,正面看去则呈旋涡状。银河系的直径约10万光年,太阳位于银河系的一个旋臂中,距银心约3万光年。银河系外还有许多类似的天体系统,称为河外星系,常简称星系。现已观测到大约有10亿个。星系也聚集成大大小小的集团,叫星系团。平均而言,每个星系团约有百余个星系,直径达上千万光年。现已发现上万个星系团。包括银河系在内约40个星系构成的一个小星系团叫本星系群。若干星系团集聚在一起构成更大、更高一层次的天体系统叫超星系团。超星系团往往具有扁长的外形,其长径可达数亿光年。通常超星系团内只含有几个星系团,只有少数超星系团拥有几十个星系团。本星系群和其附近的约50个星系团构成的超星系团叫做本超星系团。目前天文观测范围已经扩展到200亿光年的广阔空间,它称为总星系。
运动和发展 宇宙天体处于永恒的运动和发展之中,天体的运动形式多种多样,例如自转、各自的空间运动(本动)、绕系统中心的公转以及参与整个天体系统的运动等。月球一方面自转一方面围绕地球运转,同时又跟随地球一起围绕太阳运转。太阳一方面自转,一方面又向着武仙座方向以20千米/秒的速度运动,同时又带着整个太阳系以250千米/秒的速度绕银河系中心运转,运转一周约需2.2亿年。银河系也在自转,同时也有相对于邻近的星系的运动。本超星系团也可能在膨胀和自转。总星系也在膨胀。
现代天文学已经揭示了天体的起源和演化的历程。当代关于太阳系起源学说认为,太阳系很可能是50亿年前银河系中的一团尘埃气体云(原始太阳星云)由于引力收缩而逐渐形成的(见太阳系起源)。恒星是由星云产生的,它的一生经历了引力收缩阶段、主序阶段、红巨星阶段、晚期阶段和临终阶段。星系的起源和宇宙起源密切相关,流行的看法是:在宇宙发生热大爆炸后40万年,温度降到4000K,宇宙从辐射为主时期转化为物质为主时期,这时或由于密度涨落形成的引力不稳定性,或由于宇宙湍流的作用而逐步形成原星系,然后再演化为星系团和星系。热大爆炸宇宙模型描绘了我们的宇宙的起源和演化史:我们的宇宙起源于200亿年前的一次大爆炸,当时温度极高、密度极大。随着宇宙的膨胀,它经历了从热到冷、从密到稀、从辐射为主时期到物质为主时期的演变过程,直至10~20亿年前,才进入大规模形成星系的阶段,此后逐渐形成了我们当今看到的宇宙。1980年提出的暴涨宇宙模型则是热大爆炸宇宙模型的补充。它认为在宇宙极早期,在我们的宇宙诞生后约10-36秒的时候,它曾经历了一个暴涨阶段。
哲学分析 宇宙概念 有些宇宙学家认为,我们的宇宙是唯一的宇宙;大爆炸不是在宇宙空间的哪一点爆炸,而是整个宇宙自身的爆炸。但是,新提出的暴涨模型表明,我们的宇宙仅是整个暴涨区域的非常小的一部分,暴涨后的区域尺度要大于1026厘米,而那时我们的宇宙只有10厘米。还有可能这个暴涨区域是一个更大的始于无规则混沌状态的物质体系的一部分。这种情况恰如科学史上人类的认识从太阳系宇宙扩展到星系宇宙,再扩展到大尺度宇宙那样,今天的科学又正在努力把人类的认识进一步向某种探索中的“暴涨宇宙”、“无规则的混沌宇宙”推移。我们的宇宙不是唯一的宇宙,而是某种更大的物质体系的一部分,大爆炸不是整个宇宙自身的爆炸,而是那个更大物质体系的一部分的爆炸。因此,有必要区分哲学和自然科学两个不同层次的宇宙概念。哲学宇宙概念所反映的是无限多样、永恒发展的物质世界;自然科学宇宙概念所涉及的则是人类在一定时代观测所及的最大天体系统。两种宇宙概念之间的关系是一般和个别的关系。随着自然科学宇宙概念的发展,人们将逐步深化和接近对无限宇宙的认识。弄清两种宇宙概念的区别和联系,对于坚持马克思主义的宇宙无限论,反对宇宙有限论、神创论、机械论、不可知论、哲学代替论和取消论,都有积极意义。
【宇宙的创生】
有些宇宙学家认为,暴涨模型最彻底的改革也许是观测宇宙中所有的物质和能量从无中产生的观点,这种观点之所以在以前不能为人们接受,是因为存在着许多守恒定律,特别是重子数守恒和能量守恒。但随着大统一理论的发展,重子数有可能是不守恒的,而宇宙中的引力能可粗略地说是负的,并精确地抵消非引力能,总能量为零。因此就不存在已知的守恒律阻止观测宇宙从无中演化出来的问题。这种“无中生有”的观点在哲学上包括两个方面:①本体论方面。如果认为“无”是绝对的虚无,则是错误的。这不仅违反了人类已知的科学实践,而且也违反了暴涨模型本身。按照该模型,我们所研究的观测宇宙仅仅是整个暴涨区域的很小的一部分,在观测宇宙之外并不是绝对的“无”。现在观测宇宙的物质是从假真空状态释放出来的能量转化而来的,这种真空能恰恰是一种特殊的物质和能量形式,并不是创生于绝对的“无”。如果进一步说这种真空能起源于“无”,因而整个观测宇宙归根到底起源于“无”,那么这个“无”也只能是一种未知的物质和能量形式。②认识论和方法论方面。暴涨模型所涉及的宇宙概念是自然科学的宇宙概念。这个宇宙不论多么巨大,作为一个有限的物质体系 ,也有其产生、发展和灭亡的历史。暴涨模型把传统的大爆炸宇宙学与大统一理论结合起来,认为观测宇宙中的物质与能量形式不是永恒的,应研究它们的起源。它把“无”作为一种未知的物质和能量形式,把“无”和“有”作为一对逻辑范畴,探讨我们的宇宙如何从“无”——未知的物质和能量形式,转化为“有”——已知的物质和能量形式,这在认识论和方法论上有一定意义。
【时空起源】
有些人认为,时间和空间不是永恒的,而是从没有时间和没有空间的状态产生的。根据现有的物理理论,在小于10-43秒和10-33厘米的范围内,就没有一个“钟”和一把“尺子”能加以测量,因此时间和空间概念失效了,是一个没有时间和空间的物理世界。这种观点提出已知的时空形式有其适用的界限是完全正确的。正像历史上的牛顿时空观发展到相对论时空观那样,今天随着科学实践的发展也必然要求建立新的时空观。由于在大爆炸后10-43秒以内,广义相对论失效,必须考虑引力的量子效应,因此有些人试图通过时空的量子化的途径来探讨已知的时空形式的起源。这些工作都是有益的,但我们决不能因为人类时空观念的发展或者在现有的科学技术水平上无法度量新的时空形式,而否定作为物质存在形式的时间、空间的客观存在。
人和宇宙 从本世纪60年代开始,由于人择原理的提出和讨论,出现了人类存在和宇宙产生的关系问题。人择原理认为 ,可能存在许多具有不同物理参数和初始条件的宇宙,但只有物理参数和初始条件取特定值的宇宙才能演化出人类,因此我们只能看到一种允许人类存在的宇宙。人择原理用人类的存在去约束过去可能有的初始条件和物理定律,减少它们的任意性,使一些宇宙学现象得到解释,这在科学方法论上有一定的意义。但有人提出,宇宙的产生依赖于作为观测者的人类的存在。这种观点值得商榷。现在根据暴涨模型,那些被传统大爆炸模型作为初始条件的状态,有可能从极早期宇宙的演化中产生出来,而且宇宙的演化几乎变得与初始条件的一些细节无关。这样就使上述那种利用初始条件的困难来否定宇宙客观实在性的观点失去了基础。但有些人认为,由于暴涨引起的巨大距离尺度,使得从整体上去观测宇宙的结构成为不可能。这种担心有其理由,但如果暴涨模型正确的话,随着科学实践的发展,一定有可能突破人类认识上的困难。
【宇宙物质多样性】
太阳系天体中,水星、金星表面温度约达700K,遥远的冥王星向日面的温度最高时也只有50K;金星表面笼罩着浓密的二氧化碳大气和硫酸云雾,气压约50个大气压,水星、火星表面大气却极其稀薄,水星的大气压甚至小于2×10-9毫巴;类地行星(水星、金星、火星)都有一个固体表面,类木行星却是一个流体行星;土星的平均密度为0.70克/厘米3,比水的密度还小,木星、天王星、海王星的平均密 度略大于水的密度,而水星、金星、地球等的密度则达到水的密度的5倍以上;多数行星都是顺向自转,而金星是逆向自转;地球表面生机盎然,其他行星则是空寂荒凉的世界。
太阳在恒星世界中是颗普遍而又典型的恒星。已经发现,有些红巨星的直径为太阳直径的几千倍。中子星直径只有太阳的几万分之一;超巨星的光度高达太阳光度的数百万倍,白矮星光度却不到太阳的几十万分之一。红超巨星的物质密度小到只有水的密度的百万分之一,而白矮星、中子星的密度分别可高达水的密度的十万倍和百万亿倍。太阳的表面温度约为6000K,O型星表面温度达30000K,而红外星的表面温度只有约600K。太阳的普遍磁场强度平均为1×10-4特斯拉,有些磁白矮星的磁场通常为几千、几万高斯(1高斯=10-4特斯拉),而脉冲星的磁场强度可高达十万亿高斯。有些恒星光度基本不变,有些恒星光度在不断变化,称变星。有的变星光度变化是有周期的,周期从1小时到几百天不等。有些变星的光度变化是突发性的,其中变化最剧烈的是新星和超新星,在几天内,其光度可增加几万倍甚至上亿倍。
恒星在空间常常聚集成双星或三五成群的聚星,它们可能占恒星总数的1/3。也有由几十、几百乃至几十万个恒星聚在一起的星团。宇宙物质除了以密集形式形成恒星、行星等之外,还以弥漫的形式形成星际物质。星际物质包括星际气体和尘埃,平均每立方厘米只有一个原子,其中高度密集的地方形成形状各异的各种星云。宇宙中除发出可见光的恒星、星云等天体外,还存在紫外天体、红外天体、X射线源、γ射线源以及射电源。
星系按形态可分为椭圆星系、旋涡星系、棒旋星系、透镜星系和不规则星系等类型。60年代又发现许多正在经历着爆炸过程或正在抛射巨量物质的河外天体,统称为活动星系,其中包括各种射电星系、塞佛特星系、N型星系、马卡良星系、蝎虎座BL型天体,以及类星体等等。许多星系核有规模巨大的活动:速度达几千千米/秒的气流,总能量达1055焦耳的能量输出,规模巨大的物质和粒子抛射,强烈的光变等等。在宇宙中有种种极端物理状态:超高温、超高压、超高密、超真空、超强磁场、超高速运动、超高速自转、超大尺度时间和空间、超流、超导等。为我们认识客观物质世界提供了理想的实验环境。
现代天文学已经揭示了天体的起源和演化的历程。当代关于太阳系起源学说认为,太阳系很可能是50亿年前银河系中的一团尘埃气体云(原始太阳星云)由于引力收缩而逐渐形成的(见 太阳系起源 )。恒星是由星云产生的,它的一生经历了引力收缩阶段、主序阶段、红巨星阶段、晚期阶段和临终阶段。星系的起源和宇宙起源密切相关,流行的看法是:在宇宙发生热大爆炸后40万年,温度降到4000K,宇宙从辐射为主时期转化为物质为主时期,这时或由于密度涨落形成的引力不稳定性,或由于宇宙湍流的作用而逐步形成原星系,然后再演化为星系团和星系。热大爆炸宇宙模型描绘了我们的宇宙的起源和演化史:我们的宇宙起源于200亿年前的一次大爆炸,当时温度极高、密度极大。随着宇宙的膨胀,它经历了从热到冷、从密到稀、从辐射为主时期到物质为主时期的演变过程,直至10~20亿年前,才进入大规模形成星系的阶段,此后逐渐形成了我们当今看到的宇宙。1980年提出的暴涨宇宙模型则是热大爆炸宇宙模型的补充。它认为在宇宙极早期,在我们的宇宙诞生后约10 -36 秒的时候,它曾经历了一个暴涨阶段。
时空起源 有些人认为,时间和空间不是永恒的,而是从没有时间和没有空间的状态产生的。根据现有的物理理论,在小于10 -43 秒和10 -33 厘米的范围内,就没有一个“钟”和一把“尺子”能加以测量,因此时间和空间概念失效了,是一个没有时间和空间的物理世界。这种观点提出已知的时空形式有其适用的界限是完全正确的。正像历史上的牛顿时空观发展到相对论时空观那样,今天随着科学实践的发展也必然要求建立新的时空观。由于在大爆炸后10 -43 秒以内,广义相对论失效,必须考虑引力的量子效应,因此有些人试图通过时空的量子化的途径来探讨已知的时空形式的起源。这些工作都是有益的,但我们决不能因为人类时空观念的发展或者在现有的科学技术水平上无法度量新的时空形式,而否定作为物质存在形式的时间、空间的客观存在。
人和宇宙 从本世纪60年代开始,由于人择原理的提出和讨论,出现了人类存在和宇宙产生的关系问题。人择原理认为,可能存在许多具有不同物理参数和初始条件的宇宙,但只有物理参数和初始条件取特定值的宇宙才能演化出人类,因此我们只能看到一种允许人类存在的宇宙。人择原理用人类的存在去约束过去可能有的初始条件和物理定律,减少它们的任意性,使一些宇宙学现象得到解释,这在科学方法论上有一定的意义。但有人提出,宇宙的产生依赖于作为观测者的人类的存在。这种观点值得商榷。现在根据暴涨模型,那些被传统大爆炸模型作为初始条件的状态,有可能从极早期宇宙的演化中产生出来,而且宇宙的演化几乎变得与初始条件的一些细节无关。这样就使上述那种利用初始条件的困难来否定宇宙客观实在性的观点失去了基础。但有些人认为,由于暴涨引起的巨大距离尺度,使得从整体上去观测宇宙的结构成为不可能。这种担心有其理由,但如果暴涨模型正确的话,随着科学实践的发展,一定有可能突破人类认识上的困难。
未来宇宙科学
宇宙科学大大深化了人们对宇宙结构、起源和演化的认识,为了解物质结构和相互作用提供了新的统一图景。在地外生命等重大问题的研究中,天文学将更进一步与物理学交叉,并与许多领域紧密地联系在一起。
中国的载人飞船和空间站何时能够遨游太空?在新千年即将来临之际,67岁的飞船总设计师戚发轫教授发表了谈话。
试验飞船发射入轨并圆满返回到预定区域,为我国在21世纪前十年内实现把宇航员送上太空并安全返回打下了坚实的基础。
21世纪,人类开发利用丰富的空间资源将成为必然。空间资源主要有轨道资源、环境资源和物质资源。开发利用空间资源,人必须要较长时间在空间环境工作,并要往返于地球和空间站之间。载人飞船只是往返天地之间的运输工具,最终必须依赖长期在空间工作的空间站。建立空间站,一要解决太空人出舱,二要解决飞船与空间站的相互交会对接等技术难题。下个世纪,我国掌握空间站的关键技术应该不成问题。
“宇宙”一词,最早大概出自我国古代著名哲学家墨子(约公元前468-376)。他用“宇”来指东、西、南、北,四面八方的空间,用“宙”来指古往今来的时间,合在一起便是指天地万物,不管它是大是小,是远是近;是过去的,现在的,还是将来的;是认识到的,还是未认识到的……总之是一切的一切。
从哲学的观点看。人们认为宇宙是无始无终,无边无际的。不过,对这个深奥的概念我们不打算做深入的探讨,还是留给哲学家们去研究。我们不妨把眼光缩小一些,讲一讲利用我们现有的科学技术所能了解和观测的宇宙,人们把它称为“我们的宇宙”或“总星系”。
从最新的观测资料看,人们已观测到的离我们最远的星系是130亿光年。也就是说,如果有一束光以每秒30万千米的速度从该星系发出,那么要经过130亿年才能到达地球。这130亿光年的距离便是我们今天所知道的宇宙的范围。再说得明确一些,我们今天所知道的宇宙范围,或者说大小,是一个以地球为中心,以130亿光年的距离为半径的球形空间。当然,地球并不真的是什么宇宙的中心,宇宙也未必是一个球体,只是限于我们目前的观测能力,我们只能了解到这一程度。
在这个以130亿光年为半径的球形空间里,目前已被人们发现和观测到的星系大约有1250亿个,而每个星系又拥有像太阳这样的恒星几百到几万亿颗。因此只要做一道简单的数学题,你就不难了解到,在我们已经观测到的宇宙中拥在多少星星。地球在如此浩瀚的宇宙中,真如沧海一粟,渺小得微不足道。
一直以来, 天文学家和我们一样,想知道宇宙究竟有多大。最近,美国的太空网报道,经过艰苦的计算工作,天文学家发现宇宙超乎寻常的大,其长度至少为1560亿光年。“这样一个有关宇宙大小的发现,显然是以'宇宙是球形的,是有限无边的’为前提条件的。”中国国家天文台的研究员陈大明在接受记者专访时说,“长期以来,宇宙学研究领域一直有这样一个争论,宇宙究竟是球形的、马鞍形的、还是平坦的。”北京师范大学副教授张同杰说:“国际主流宇宙学普遍认为宇宙是平坦的,是无限的。”那么,围绕宇宙的争论从何而来?理据何在?一种最为普遍的观点:在大爆炸之后,宇宙诞生了。“根据现代宇宙学中最有影响的大爆炸学说,我们的宇宙是大约137亿年前由一个非常小的点爆炸产生的,目前宇宙仍在膨胀。”陈大明研究员说,“这一学说得到大量天文观测的证实。”这一学说认为,宇宙诞生初期,温度非常高,随着宇宙的膨胀,温度开始降低,中子、质子、电子产生了。此后,这些基本粒子就形成了各种元素,这些物质微粒相互吸引、融合,形成越来越大的团块,这些团块又逐渐演化成星系,恒星、行星,在个别的天体上还出现了生命现象,能够认识宇宙的人类最终诞生了。宇宙是球形的、有限无边的?“认为宇宙是球形的观点在很长时间内存在着,尽管不是国际宇宙学界的主流。”陈大明介绍说,“它的每一次提出,都会引起人们的关注,就是因为这一观点很奇特。”一个最为明显的例子就是不久前,由美国数学家杰弗里·威克斯构建的宇宙模型:一个大小有限、形状如同足球的镜子迷宫。“形如足球”的模型令科学界震惊,因为这一学说宣称,宇宙之所以令人产生无边无界的“错觉”,是因为这个有限空间通过“返转”效应无限重复映现自身。威克斯认为,人们之所以感觉宇宙是无限的,是因为宇宙就像一个镜子迷宫,光线传过来又传过去,让人们发生错觉,误以为宇宙在无限伸展。这一惊人推断后来被《新科学家》杂志收录,同时作为一种“奇谈”在民间广为流传着。

牛郎织女
牛郎织女是我国最有名的一个民间传说,是我国人民最的关于星的故事。这个故事是谁最先说出来的,什么时候开始在民间流传——这两个问题不晓得已经有人考证出来没有。南北朝时代写成的《荆楚岁时记》里有这么一段:“天河之东,有织女,天帝之子也。年年织杼役,织成云锦天衣。天帝怜其独处,许嫁河西牵牛郎。嫁后遂废织纴。天帝怒,责令归河东。唯每年七月七日夜,渡河一会。”
关于织女,古书里还有几处提到她。《后汉书·天文志》:“织女,天子真女。”《史记》:“三星,在天纪东端,天女也。”《焦林大斗记》:“天河之东,有星微微,在氐之下,谓之织女。”天河就是我们在夜里看到的那条横贯天空的光带;我国古人也把它叫做“银汉”、“星河”、“天杭”、“银潢”、“明河”、“高寒”等等。现在天文学家叫它“银河”。织女星在银河的东边,它的西名是Vega。从前我国人把天空分作二十八宿和三桓,现在全世界的天文学家公定把天空分作88个“星座”。织女星是天琴星座里最亮的恒星。附近银河里有五个几乎一样亮的恒星排成十字架的形状,那五个星属天鹅座。银河的西边稍为南一点有三个星排得很近,中间那个比较亮一些的星就是牛郎星,也叫牵牛星,我国古称“河鼓”、“何鼓”、“黄姑”,西名叫Altair。牛郎是天鹰座里最亮的恒星。它和两旁那两个亮度小一点的星,有时候被人们合起来称为“扁担星”。神话里说旁边那两个星是牛郎和所生的孩子。天鹅在银河里漂游,河畔有一位姑娘在织布,对岸有一个牧人带着两个小孩子在放牛。这是多么美丽的一幅图画。
宋代词人秦观也被牛郎织女这个悲里带欢、欢里带悲的故事激动了文思;他把这可歌可泣的故事的意境用长短句很巧妙地表达出来。“鹊桥仙”是词里很美丽的一首。
纤云弄巧,飞星传恨,银汉迢迢暗度。
金风玉露一相逢,便胜却人间无数。
柔情似水,佳期如梦,忍顾鹊桥归路。
两情若是久长时,又岂在朝朝暮暮。
从前我国许多人相信牛郎和织女真的在七夕渡河相会一次。那一夜,妇女们都穿针乞巧民,又以瓜果祀织女星。这个故事也常被用作戏剧的资料,京剧、话剧和各地的地方戏里多半有“牛郎织女”这出戏。
在戏剧里,牛郎是一个农村里放牛的孩子。他不肯帮哥哥种田,不肯帮嫂嫂车水,不肯帮妈妈做家务事。牛郎只是贪玩,只爱作奇怪的幻想。他的最好的朋友就是他所看守的老牛。有一晚,他在梦幻中看到天上的仙境。他便牵着老牛动身到天上去。同时,在天上有一位织女却想要下凡来享受人间的温暖。王母娘娘可怜织女的孤寂,便差遣金童玉女和喜鹊把织女带到天涯海角去和牛郎相会。“金风玉露一相逢”,真是“胜却人间无数”。一对爱侣被送上九霄云外度蜜月去了。
牛郎游遍了天上的胜境,日子一久,也便觉得平淡无奇了。织女得继续纺织云锦天衣,不能老陪着他。牛郎越来越感觉无聊,又从金童得知家里的人日夕在盼望他回去,便把回家的意念告诉织女。织女决心和他同到地上去享受那可爱的春天。可惜事机不密,给西王母晓得了。她赶来用玉簪划成银河一道,把牛郎和织女隔开,只答应每年七夕遣喜鹊结成天桥,使他们渡河相会一次。牛郎回到人间,很高兴地再看到母亲、哥哥、嫂嫂。从此,他不再偷懒,不再作无谓的幻想,天天努力劳动。他觉悟到在现实生活里也可以创造出美丽来。他闻到泥土的香味了,他洞悉生活的意义了。他唯一的惋惜,就是所爱的织女不能也到地上来和他一起劳动,一起享受人间的温暖。不过每年七夕还可以相会一次,那已经比永别好多了。
有个话剧里有几首歌曲,其中一首是俞鹏所作的《鹊相会》:
谁知道天长地久何时了?
谁知道离恨年年有多少?
度尽了长岁,好难得这七夕良宵;
却又是无限悲愁相逢在鹊桥。
梦长夜短总是多情恼。
见东山晨星已现,天将晓。
可奈何,喜鹊频噪,催人分道。
只好待明年的七夕快快的来到。
一直到今天,我国还有好些人真的相信牛郎织女两星每年七夕渡河相会一次,许多妇女还在那一夜向织女乞巧。很可惜,科学告诉我们:牛郎织女这个故事并不是真的,它只是一个富有诗意的神话而已。近年来,天文学的进步,使我们对这个恒星,对其他的恒星和银河中,都认识得比从前清楚得多。银河并不是一条河,银河里并没有一滴水,也没有桥。它是很多恒星和星云的集合,用大望远镜就可以看出来。牛郎织女两星虽然不是绝对的“恒”,但每逢七夕并不能看出它们向对方移动丝毫,当然更谈不到“渡河”。每年七夕,还是一在河之东,一在河之西,彼此都在望河兴叹。科学的进步竟打碎了他们的美梦,这使作者想起曹雪芹替太虚幻境的牌坊所作的对联:
厚地高天,堪叹古今情不尽;
痴男怨女,可怜风云债难酬。
恒星的“恒”字,只是和行星的“行”字相对而言。实际上天上没有一个星是绝对地“恒”;每个星都在动,动多动少而已。牛郎星每年在天球上移动0.658角秒;此外,每秒钟还以26千米(每小时93600千米)的速度离开我们往外跑。所以,牛郎星在空间的速度比地上最快的客机还快几十倍。织女动得慢一点,不过在女子百米比赛里还是可以得冠军。她每年在天球上移动0.345角秒,每秒钟以14千米的速度离开我们行为往外跑。
牛郎和织女都比太阳大得多、亮得多。为什么我们看起来只是两小点的光呢?那是因为这两个恒星比太阳远得多。牛郎的光度为太阳的10.5倍,直径大7成,质量差不多大7成。织女的光度等于太阳的60倍,直径等于太阳的2.76倍,质量差不多等于太阳的3倍。所以,织女比牛郎大,比牛郎亮,比牛郎重,算来还是牛郎的大姐姐。牛郎离我们的距离为154万亿千米,比太阳远100万倍;织女离我们的距离为250万亿千米,比太阳远170万倍。织女不仅比牛郎大好些、亮好些,而且又远好些,所以我们看起来两个星差不多一样亮。光从牛郎星来到我们的眼里,需要16年4个月;光从织女星来,需要26年5个月。牛郎织女两星不是在同一方向,两星之间的距离是16.4光年。无线电波的速度和光一样,假使牛郎想打一个无线电话给织女,得等32年才有收到回电的可能。
恒星在大小、光度、温度、颜色方面相差都很大,质量却差得不很多。20世纪以来,天文学家把许多恒星分门别类,好像生物学家把动植物分门别类那样。
科学家已经证明日光和星光都是从原子能来的。因此,牛郎和织女这两个星也可以说是两个非常大的原子弹。它们把肚子里的原子能变成光线发射出来。人类在欣赏它们的灿烂的光辉的时候,竟幻想出一个哀艳动人的故事来。
童话和神仙故事并不会因物质文明的进步而被消灭。它们可以提高少年人的幻想能力,可以作成年人的业余的消遣,又可以作为各种艺术的原料。中国的牛郎织女可以和希腊的奥德赛、金羊毛,法国的尼贝伦指环等故事并列。每年七夕,大家不妨继续提出牛郎织女这个故事来谈:一方面欣赏这富有诗意的神话,一方面也可借机会提倡科学,使一般人注意到科学家替我们所发现的许多关于星星的新知识。

天文术语(共收集106条天文术语)
[此文章来自空间天文网]
汉语拼音引索-A
>> 暗物质 an
既看不见又不发出辐射的物质,占宇宙质量的90%。它们不可见,但通过对它们对星系和银河星团的引力作用可以推断它们确实存在。
>> 奥伯斯佯缪 ao b
德国天文学家奥伯斯1826年指出, 静止,均匀,无限的宇宙模型会导致一个重大矛盾,即无论从哪一个方向观看天空,视线都会碰到一个星星因而整个天空就要亮的象太阳一样,实际上夜空却是黑的。理论和观测之间的这种矛盾就叫做奥伯斯佯缪。即使天体之间有吸光物质,这个矛盾也仍然存在。有些人从天体非均匀分布,天体寿命有限的效应或演化效应来解释; 也有人通过假设引力常数随距离的增加而减少到零来解释。对于奥伯斯佯缪,现在一般都倾向于从膨胀宇宙模型来解释。 这个矛盾是从观测和理论相联系的角度考虑宇宙的大尺度性质时提出来的。它标志着科学的宇宙学的萌芽。
>> 奥尔特云 ao e
包围在太阳系外面的一个由冰质物质构成的巨大的球形云,是长周期彗星的储存库。
汉语拼音引索-B
>> 白矮星 bai a
白矮星的光谱属於A型,是高温、体积小的致密星,即 使大小如地球般,质量已介乎於十分之三及一·四个太 阳质量间,密度是水的十万倍。现时大约测度到一千多 颗白矮星,白矮星是恒星演化晚期归宿之一,我们的太 阳终归是走上这一条路途的。
>> 白洞 bai d
广义相对论所预言的一种与黑洞相反的特殊天体。和黑洞类似,它也有一个封闭的边界,聚集在白洞内部的物质,只可以经边界向外运动,而不能反向 运动,就是说白洞只向外部区域输出物质和能量,而不能吸收外部区域的任 何物质和辐射。球状白洞的几何边界也是以史瓦西半径为半径的球面。其外 部时空由史瓦西度规描述。白洞是一个强引力源,其外部引力性质与黑洞相 同。白洞可以把它周围的物质吸积到边界上形成物质层。白洞学说主要用来 解释一些高能天体现象,有人认为,类星体的核心就可能是一个白洞。当白 洞内中心奇点附近所聚集的超密态物质向外喷射时,就会同它周围的物质发 生猛烈碰撞,而释放出巨大能量。因此,有些剧烈的射电射线现象可能与白 洞的这种效应有关。白洞目前还是一种理论模型,尚未被观测所证实。
>> 棒旋星系 ban
一种有棒状结构贯穿星系核的漩涡星系。在星系的分类中,以符号SB表示,以区别于正常螺旋星系S。在全天的亮星系中,棒旋星系约占15%.当统计到较暗的星系时,棒旋星系的比例提高到25%. 棒旋星系在质量,光度和光谱上,在成员天体的星族类型, 气体和尘埃的分布, 星系盘和星系晕的结构以及空间分布的特等方面,都和正常的螺旋星系相似.按照哈勃的分类法和沃库洛的分类法,棒旋星系可分为三类:①正常棒旋星系SBa、SBb、和SBc; ②透镜型棒旋星系SB0;③不规则棒旋星系SBd和SBm.正常棒旋星系的特征是棒状结构明显,旋臂从棒端伸出,通常与棒体成90度。旋臂从a到c越来越展开。SBa和SBb的棒状结构光滑,而SBc的棒体和旋臂上都有明显可见的亮星、亮节或亮团.透镜型棒旋星系SB0与椭圆星系的不同之处则是没有旋臂.它的外形犹如希腊字母的Θ,即中心有一亮核,核外为一圈亮度较暗并与核共心的透镜型星系盘,棒体的两端一般交于盘体的周边之上. 不规则棒旋星系SBd和SBm的棒状结构不一定在星系的中心位置上。棒状结构的光度约占星系光度的10~20%; 颜色往往比旋臂红. 棒旋星系在运动方面的特征是:核心常为一个大质量的快速旋转体,运动状态和空间结构复杂棒状结构内部和附近的气体和恒星都有非圆周运动; 星系盘在星系的外部似乎居主要地位, 占星系质量的很大一部分. 棒旋星系有许多基本问题尚待解决,如棒状结构是怎样形成的,它在星系演化过程中起什么作用等.
>> 本星系群 ben
以银河系为中心,半径约为百万秒差距(300多万光年)的空间内的星系之总称。也有人把本星系群的中心定义为银河系和仙女星系(M31) 的公共重心。目前已知本星系群的成员星系和可能的成员星系有40个左右。其中有两个巨型旋涡星系(银河系和仙女星系),一个中型旋涡星系(三角星系),一个矮型棒旋星系(大哲伦云),可能还包括一个透镜型巨星系(马菲1),其余都是矮椭圆星系和不规则星系。本星系群是一个典型的疏散群,没有向中心集聚的趋势。但其中的成员三、五聚合为次群,至少有以银河系和仙女星系为中心的两个次群。本星系群的总质量为六千五百亿倍,银河系和仙女星系二者质量之和占了绝大部分。近距离星的公共重心。目前已知本星系群的成员星系和可能的成员星系有40个左右。其中有两个巨型旋涡星系(银河系和仙女星系),一个中型旋涡星系(三角星系),一个矮型棒旋星系(大哲伦云),可能还包括一个透镜型巨星系(马菲1),其余都是矮椭圆星系和不规则星系。本星系群是一个典型的疏散群,没有向中心集聚的趋势。但其中的成员三、五聚合为次群,至少有以银河系和仙女星系为中心的两个次群。本星系群的总质量为六千五百亿倍,银河系和仙女星系二者质量之和占了绝大部分。近距离星系团的空间分布表明,有一个以室女星系团为中心的更高一级的星系成团现象,长径约为30~75百万秒差距,包括50个左右星系团和星系群,称为本超星系团,本星系群是它的一个成员。
>> 闭合宇宙 bi
所拥有的质量产生的引力足以对抗其膨胀的宇宙,这种宇宙最后将以坍缩为结局。
>> 变星 bian
凡是能够观测到亮度变化的恒星,都称为变星。变星主要分为造父变星和食变星两类。食变星实际上是双星系统造成的,两颗星彼此绕着对方旋转,互相遮掩彼此的光芒,从而引起观测亮度的变化。这类变星的代表是英仙座的大陵五。造父变星的变光现象,确实是由它自身造成的,如仙王座的造父一。这类变星就象人体的心脏一样,总在不停地搏动--膨胀与收缩,从而引起亮度的变化,其搏动的周期也就是它亮度变化的周期。
>> 标准时 biao
把地球按地理经度分为24个时区,没一个时区包含地理经度15°。并以格林尼治本初子午线东、西各7°、5°的范围作为零时区,在零时区以东为东一区(东经7°.5-22°.5),东二区……东十二区;以西为西一区(西经7°.5-22°.5),西二区……西十二区(与东十二区重合)。每一时区都按它的中央子午线来计量时间,即采用它的中央子午线的地方平时,叫做标准时。相邻两时区,时间相差1小时。我国地域广阔,横跨东五区到东九区五个时区。为了方便,一律采用第八区时,即东经120°标准时,一就是我们通常所说的北京时间。北京时间比世界是早八小时。即:北京时间=世界时+8小时。
汉语拼音引索-C
>> 超新星 chao xin x
一颗看来暗淡的恒星,由於本身内部的突然爆发,向外 抛射大量物质及能量,光度骤增一千万倍,亮度超过本 身的十七个视星等。这时我们称之为超新星爆发(爆炸 ) 超新星并非星,而只是一个爆发现象,也是恒星演 化到晚期的一个阶段,亮度增幅少於十七个视星等的称 为新星爆发(爆炸)。恒星的归宿是按其质量大小和爆 发的程度而进入不同的最後阶段,新星爆炸後就进入白 矮星阶段,超新星爆炸後则演化成中子星或黑洞
>> 超星系团 chao xing
数千个星系在引力的连接下结成的巨大星群。
>> 赤道坐标 chi d
一种“天文坐标“。以赤经和赤纬两个坐标表示天球上任一天体的位置。由春分点的赤经圈(时圈)与通过该天体的赤经圈在北天极所成的角度,或在天赤道上所夹的弧长,称为该天体的赤经计量方向自春分点起沿着与天球周日运动相反的方向量度,以时、分、秒表示。从天赤道开始沿赤经圈到天体的角距离称为该天体的赤纬。计量方向从天赤道起,由0-90度,天赤道以北为正。
>> 赤经、赤纬 chi j
在天球的赤道坐标系中,天体的位置根据规定用经纬度来表示,称作赤经(α)、 赤纬(δ)。我们知道,赤道和地球的公转轨道面也就是黄道是不重从合的,二者间有23°左右的夹角(天文学称之为“黄赤交角”)。这样,天赤道和黄道就有了两个交点,而这两个交点在天球上是固定不变的。黄道自西向东从赤道以南穿到赤道以北的那个交点,在天文学中称之为“春分点”。我们把通过这一点的经线定为天球赤道坐标系经线的0°。与地球经度不同的是赤经不分东经、西经,它是从0°开始自西向东到360°。而且,它的单位事实上也不是“度”,而是时间的单位时、分、秒,范围是0~24时。天球赤道坐标系的纬度规定与地球纬度类似。只是不称作“南纬”和“北纬”,天球赤纬以北纬为正,以南为负。
>> 冲 cho
行星在其轨道上与地球隔着太阳正相对的一点。
汉语拼音引索-D
>> 大爆炸宇宙学 da
现代宇宙学中最有影响的一种学说。与其它宇宙模型相比,它能说明较多的观测事实。它的主要观点是认为我们的宇宙曾有一段从热到冷的演化史。在这个时期里,宇宙体系并不是静止的,而是在不断地膨胀,使物质密度从密 到稀地演化。这一从冷到热从密到稀的过程如同一次规模很大的爆发。根据 大爆炸宇宙学的观点,大爆炸的整个过程是:在宇宙的早期,温度极高,在 100亿度以上。物质密度也相当大,整个宇宙体系达到平衡。宇宙间只有 中子、质子、电子、光子和中微子等一些基本粒子形态的物质。但是因为整 个体系在不断膨胀,结果温度很快下降。当温度降到10亿度左右时,中子 开始失去自由存在的条件,它要么发生衰变,要么与质子结合成重氢、氦等 元素;化学元素就是从这一时期开始形成的。温度进一步下降到100万度 后,早期形成化学元素的过程结束。宇宙间的物质主要是质子、电子、光子 和一些比较轻的原子核。当温度降到几千度时,辐射减退,宇宙间主要是气 态物质,气体逐渐凝聚成气云,在进一步形成各种各样的恒星体系,成为我 们今天看到的宇宙。大爆炸模型能统一说明以下几个观测事实:
1大爆炸理 论主张所有恒星都是在温度下降后产生的,因而任何天体的年龄都应比自温 度至今天这一段时间为短,即应小于200亿年。各种天体年龄的测量证明 了这一点。
2观测到河外天体有系统性的谱线红移,而且红移与距离大体成 正比。如果用多普勒效应来解释,那么红移就是宇宙膨胀的反映。
3在各种 不同天体上,氦丰度相当大,而且大都是30%。用恒星核反应机制不足以 说明为什么又如此多的氦。而根据大爆炸理论,早期温度很高,产生氦的效 率也很高,则可以说明这一事实。
4根据宇宙膨胀速度以及氦丰度等,可以 具体计算宇宙每一历史时期的温度。大爆炸理论的创始人之一伽莫夫曾预言 今天的宇宙已经很冷,只有绝对温度几度。1965年,果然在微波波段上 探测到具有热辐射谱的微波背景辐射,温度大约为3K。这一结果无论在定 性上或者定量上都与大爆炸理论的预言相符。但是,在星系的起源和各向同 性分布等方面,大爆炸宇宙学还存在一些未解决的困难问题。
...................................................
>> 地方时 di f
恒星时、视时、平时都由时角定义,而时角是从子午圈量起的,对于地面上不同地理经圈的地方,它们的子午圈是不同的,施加也就不同。因此,以地方子午圈为基准所决定的时间,叫做地方时。在同一计量系统内,同一瞬间测得地球上任意两点的地方时刻之差,在数值上等于着两点的地理经度差。
...................................................
>> 地平经度(方位角) di p
自北点沿地平圈向东度量的天体的距离。
...................................................
>> 地球的磁层 di qiu de c
地球磁场,简言之是偶极型的,近似于把一个磁铁棒放到地球中心,使它的N极大体上对着南极而产生的磁场形状。当然,地球中心并没有磁铁棒,而是通过电流在导电液体核中流动的发电机效应产生磁场的。
地球磁场不是孤立的,它受到外界扰动的影响,宇宙飞船就已经探测到太阳风的存在。太阳风是从太阳日冕层向行星际空间抛射出的高温高速低密度的粒子流,主要成分是电离氢和电离氦。
因为太阳风是一种等离子体,所以它也有磁场,太阳风磁场对地球磁场施加作用,好像要把地球磁场从地球上吹走似的。尽管这样,地球磁场仍有效地阻止了太阳风长驱直入。在地球磁场的反抗下,太阳风绕过地球磁场,继续向前运动,于是形成了一个被太阳风包围的、慧星状的地球磁场区域,这就是磁层。
地球磁层位于地面600~1000公里高处,磁层的外边界叫磁层顶,离地面5~7万公里。在太阳风的压缩下,地球磁力线向背着太阳一面的空间延伸得很远,形成一条长长的尾巴,称为磁尾。在磁赤道附近,有一个特殊的界面,在界面两边,磁力线突然改变方向,此界面称为中性片。中性片上的磁场强度微乎其微,厚度大约有1000公里。中性片将磁尾部分成两部分:北面的磁力线向着地球,南面的磁力线离开地球。
1967年发现,在中性片两侧约10个地球半径的范围里,充满了密度较大的等离子体,这一区域称作等离子体片。当太阳活动剧烈时,等离子片中的高能粒子增多,并且快速地沿磁力线向地球极区沉降,于是便出现了千资百态、绚丽多彩的极光。由于太阳风以高速接近地球磁场的边缘,便形成了一个无碰撞的地球弓形激波的波阵面。波阵面与磁层顶之间的过渡区叫做磁鞘,厚度为3~4个地球半径。
地球磁层是一个颇为复杂的问题,其中的物理机制有待于深入研究。磁层这一概念近来已从地球扩展到其他行星。甚至有人认为中子星和活动星系核也具有磁层特征。
...................................................
>> 地球的辐射带 di qiu de f
早在20世纪初,就有人提出太阳在不停地发出带电粒子,这些粒子被地球磁场俘获,束缚在离地表一定距离的高空形成一条带电粒子带。50年代末60年代初,美国科学家范艾伦根据“探险者”1号、3号、4号的观测资料证实了这条辐射带的存在,确定了它的结构和范围,并发现其外面还有另一条带电粒子带,于是离地面较近的辐射带称为内辐射带,离地面较远的称为外辐射带,因是范艾伦最先发现的,故又称为内范艾伦带和外范艾伦带。
这两条地球辐射带对称于地球赤道排列,且只存在于低磁纬地区上空。内辐射带的中心约在1.5个地球半径,范围限于磁纬±40°之间,东西半球不对称,西半球起始高度低于东半球,带内含有能量为50兆电子伏的质子和能量大于30兆电子伏的电子。外辐射带位于地面上空约2~3个地球半径处,厚约6000公里,范围可延伸到磁纬50°~60°处,其中的带电粒子能量比内带小。一般说来,在内辐射带里容易测得高能质子,在外辐射带里容易测得高能电子。
地球辐射带是空间探测时代的第一项重大天文发现。1992年2月初,美国和俄罗斯的空间科学家宣布,他们发现了地球的第三条辐射带。新辐射带位于内外范艾伦带当中的位置,是由所谓的反常宇宙线——大部分是丢失一个电子的氧离子构成的。
...................................................
>> 第二宇宙速度 di e
使航天器绕太阳运行的最低速度(11.2km/s)。
...................................................
>> 第三宇宙速度 di s
使航天器脱离太阳系飞向星际空间的最低速度(16.7km/s)。
>> 第一宇宙速度 di y
发射人造地球卫星并使之围绕地球飞行的最低速度(7.9km/s)。
汉语拼音引索-F
>> 方位角(地平经度) fa
自北点沿地平圈向东度量的天体的距离。
.................................................
汉语拼音引索-G
>> 光斑(谱斑)guang b
太阳光球层上比周围更明亮的斑状组织。用天文望远镜对它观测时,常常可以发现:在光球层的表面有的明亮有的深暗。这种明暗斑点是由于这里的温度高低不同而形成的,比较深暗的斑点叫做“太阳黑子”,比较明亮的斑点叫做“光斑”。光斑常在太阳表面的边缘“表演”,却很少在太阳表面的中心区露面。因为太阳表面中心区的辐射属于光球层的较深气层,而边缘的光主要来源光球层较高部位,所以,光斑比太阳表面高些,可以算得上是光球层上的“高原”。
光斑也是太阳上一种强烈风暴,天文学家把它戏称为“高原风暴”。不过,与乌云翻滚,大雨滂沱,狂风卷地百草折的地面风暴相比,“高原风暴”的性格要温和得多。光斑的亮度只比宁静光球层略强一些,一般只大10%;温度比宁静光球层高300℃。许多光斑与太阳黑子还结下不解之缘,常常环绕在太阳黑子周围“表演”。少部分光斑与太阳黑子无关,活跃在70°高纬区域,面积比较小,光斑平均寿命约为15天,较大的光斑寿命可达三个月。
光斑不仅出现在光球层上,色球层上也有它活动的场所。当它在色球层上“表演”时,活动的位置与在光球层上露面时大致吻合。不过,出现在色球层上的不叫“光斑”,而叫“谱斑”。实际上,光斑与谱斑是同一个整体,只是因为它们的“住所”高度不同而已,这就好比是一幢楼房,光斑住在楼下,谱斑住在楼上。
...................................................
>> 光年 guang n
光在一年中走过的路程,等于9,470,000,000,000千米。
...................................................
>> 过去光锥 guo
将一块石头扔进水塘,水表面的涟漪向四周散开,涟漪以圆周的形式越变越大,这个二维的池塘水面加上一维的时间,扩大的水圈与时间就能画出一个圆锥,顶点是石头击中到水面的地方和时间,类似地,从一个事件出发的光在四维的空间-时间里形成了一个三维的圆锥,这个圆锥称为事件的过去光锥,它的宇宙学意义就是当我们遥望夜空的时候,我们并没有看到目前状态的宇宙,天空所显示的图像不同于一副瞬时拍摄的快照因为光从遥远的地方到达我们这里要花一定的时间,我们在天空中所见到的任何一个天体都是它在发光瞬间的像。望远镜好比是“望时镜”。天体离的越远,我们今天见到的像在时间上就倒退的越早。实际上我们所见的宇宙是一个穿越时空回溯的像。同样道理,一个事件将产生一个未来光锥,事件以光速向我们逼近,它的物理影响在到达前是完全无法预测的,因为我们没有发现事件发生,我们此刻还在这个事件的未来光锥之外。例如,假定太阳在三分钟之前停止发光,这个事件不会对此刻的地球发生影响,我们只能在五分钟后,当地球位于太阳停止发光这一事件的未来光锥之内才受到绝对过去发生的这一事件的影响。
...................................................
汉语拼音引索-H
>> 合 he
两个天体与观测者的视线成一条直线。
.................................................
>> 黑洞 hei
引力极强的地方,没有任何东西能从该处逃逸,甚至光线也不例外。
黑洞可从大质量恒星的“死亡”中产生,当一颗大质量恒星耗尽其内 部的核燃料而抵达其演化末态时,恒星就变成不稳定的并发生引力坍 缩,死亡恒星的物质的重量会猛烈地沿四面八方向内挤压,当引力大 的无任何其他排斥力相对抗时,把恒星压成一个称为“奇点”的孤立 点。有关黑洞结构的细节可用爱因斯坦解释引力使空间弯曲和时钟变 慢的广义相对论来计算,奇点是黑洞的中心,在它周围引力极强,通 常把黑洞的表面称为视界,或叫事件地平,或者叫做“静止球状黑洞 的史瓦西半径”,它是那些能够和遥远事件相通的时空事件和那些因 信号被强引力场捕获而不能传出去的时空事件之间的边界。在事件地 平之下,逃逸速度大于光速。
在数学模型方面研究的相当完善。
.................................................
>> 赫罗图 he l
1911年丹麦天文学家赫茨普龙,1913年美国天文学家罗素各自独立绘出亮星的光度—温度图,发现大多数恒星分布在图中左上方至右下方的一条狭长带内,从高温到低温的恒星形成一个明显的序列,称为“主星序”。为了纪念两位科学家作出的贡献,人们称这种图为赫—罗图(HR-diagram)。
该图显示出恒星的光度和表面温度随时间变化的情形,横坐标是恒星的光谱型,按照O、B、A、F、C、G、K、M顺序排列,是恒星的温度序列。纵坐标是绝对星等,即恒星光度。大多数恒星集中在主星序,少数集中在右边中部组成巨星序,一些光度特别大的超巨星分布在图的上方。那些温度高、光度弱的白矮星集中在左下方一个较密集的区域。赫罗图对研究恒星的演化有重要作用。
.................................................
>> 河外星系 he w
河外星系指的是银河系之外的其他星系,它们都是与银河系属于同一量级的庞大恒星系统。河外星系一般用肉眼看不见,就是通过一般望远镜去观察,也还是一片雾,天文学家才发现二者完全是两码事:河外星云实际上是和我们银河系、类似的星系,而真正的“星云”,都是我介银河系的内部成员,是由恒星之间的稀薄气体和尘埃组成的。因此,现在再也不用“河外星云”这个词了,而一律改称“河外星系”。
.................................................
>> “恒显圈”与“恒隐圈” heng xian
地球上不同纬度地区能看到的星座是不一样的。对于某一点,有些星座永远也看不到的;反过来呢,有些星座在那儿一年四季都看得见。对于一个地方来说,到底哪些星座看不到呢?
这里有一个小窍门,假设一个地点的纬度是φ,那么赤纬小于-(90°-φ)的天体在这里就永远看不到。反之,凡是赤纬大于(90°-φ)的天体,在这里就总能看到。因此,在天文学上,赤纬(90°-φ)称之这一地区的“恒显圈”,而赤纬-(90°-φ)叫做该地区的“恒隐圈”。
比如在北京,赤纬50°就是北京地区的“恒显圈”,位于赤纬50°以上的星星老是在天上,永远也不会落到地平线以下去。而赤纬-50°叫做北京地区的 “恒隐圈”,位于赤纬-50°经南的星星北京永远也看不到。
而在赤道上(纬度为0°),即使赤纬是+90°和-90°的天体也能看到,也就是说,赤道上没有“恒隐圈”,在赤道上各个位置的天体都能看得见。反之,在地球的南北极,则始终只能看到半个天空,另一半天空永远看不到,这两处拥有地球上最大的“恒隐圈”。
.................................................
>> 恒星时 heng xin
天球的周日旋转是地球自转的反映,我们就利用太阳、恒星或天球上假想点的周日运动来建立时间系统。由于选取的特定点不同,在天文学中就有几种不同的计量时间系统,如恒星时、真太阳时、平太阳时等。恒星是以春分点的周日视运动来确定的计量时间的系统。一个地方的恒星时以春分点对于该地子午圈的时角类量度。春分点连续两次上中天的时间间隔为1恒星日,再分为24个恒星小时……等等。
.................................................
>> 红外天文学 hong w
利用天体在波长界于1.0-350微米的红外波段来研究天文现象的天文分之学科。整个红外波段可分为近红外(1.0-5微米)、中红外(5-30微米)和远红外(30-350微米)三个波段。表面温度近于3000° K的物体的主要辐射能量集中在近红外波段,且温度越低,辐射的峰值波长就越长。因此诸如红巨星、原恒星、恒星延伸大气中的尘埃包层、气体星云和星际介质等均宜于在红外波段进行观测研究。由于星际介质对红外光的吸收较小,因此对掩埋在气体和尘埃区域的天体更只好用红外波段进行观测研究了。随着半导体物理学的发展和军事侦察的需要,研制出了灵敏度很高而热噪声很低的单元(测辐射热计)和阵列红外检测器件(红外CCD),红外天文学在近年获得了巨大的发展。已经和正在研制的大口径光学望远镜均是与红外共用的。当然不仅红外检测器本身的热辐射会防碍对微弱信号的检测,天空背境和环境的热辐射也是讨厌的噪声源。因此红外检测元件和一些核心的相关的部件必须在液氮或甚致液氦条件下工作。特别是中红外和远红外,最好到地球大气外去工作。迄今最重要和最成功的红外探测计划是口径60厘米的IRAS红外天文卫星(1983年发射,观测到245839个红外源)。其次有ISO中红外空间天文台,大视场红外实验装置和深空近红外巡天装置等。宇宙背景探测器(COBE)也包含了红外波段,对2.74K背景辐射的探测起了巨大的作用。红外波段对于研究星系的起源和恒星及其行星系统的起源是十分重要和有用的。因此美国计划发射空间红外望远镜装置(SIRTF),同温层红外天文台(SOFIA),并在地面建造口径8米的红外专用望远镜(IRO)等。
.................................................
>> 红移现象 hong y
在宇宙的星系中,星系光谱的谱线向红端的位移现象称 为红移,那正表明了多普勒效应。星系在我们视线方向 远离我们,红移量愈大,距离愈远,退行速度也愈高。 绝大部分的河外星系也存在着红移,这也表明了宇宙的 不断膨胀。换句话说,红移正是宇宙膨胀的重要证据。 二十年代,天文学家哈勃定出哈勃定律,利用所测得的 红移值定出星系的距离。
.................................................
>> 环形山 huan
环形山是月面上最显著的地貌特征。月面上星罗棋布、重重叠叠的环形山酷似地球上的火山口,中央有一块圆形的平地,外围是一圈隆起的山环,内壁陡峭,外坡平缓。
环形山的中间有一个陷落的深坑,四周围有高耸直立的岩石,环形山的高度一般在7~8公里之间。环形山大小不一,直径相差悬殊,小的环形山直径不足10公里,有的仅一个足球场大小;大的环形山直径超过100公里。最大的环形山是月球南极附近的贝利环形山,直径达295公里,比我国的浙江省小一点;   在月面上,直径大于1公里的环形山总数达33000多个,占月球表面积的10%;至于更小的、名副其实的月坑则数不胜数了。
环形山的形状也各不相同,有的大环形山内再套一个小环形山,有的大环形山中央有一个很深的坑穴,如牛顿环形山,中心坑穴深达8000多米;还有的大环形山中央陡然矗起一座山峰,叫做“中央峰”。
环形山多以著名科学家的名字命名,如哥白尼环形山、阿基米德环形山、牛顿环形山、伊巴谷环形山、卡西尼环形山等,月球背面的环形山中,有四座分别以我国古代天文学家名字命名:石申环形山、张衡环形山、祖冲之环形山和郭守敬环形山。另外,为纪念一位传说为尝试飞向天空而献身的万户(实际上是旧时一种官名),而命名的环形山,叫“万户环形山”。
现在认为,大多数环形山或月坑是由流星体、小行星和慧星撞击而成;个别的环形山则是由火山爆发而成。
.................................................
>> 黄道 huang dao
地球上的人看太阳于一年内在恒星之间所走的视路径,即地球的公转轨道平面和天球相交的大圆黄道和天赤道成23度26分的角,相交于春分点和秋分点。
.................................................
>> 黄道带 huang dao d
天球上黄道两边各8度(共宽16度)的一条带。日、月和主要行星的运行路径都处在黄道带内。古人为了表示太阳在黄道上的位置。把黄道分为十二段,叫“黄道十二宫”。从春分起依次为白羊、金牛、双子、巨蟹、狮子、室女、天秤、天蝎、人马、摩羯、宝瓶和双鱼。过去的黄道十二宫和黄道十二星座一致。由于春分点向西移动,两千年前在白羊座中的春分点已移至双鱼座,命名与星座已不吻合。
.................................................
>> 黄道坐标 huang dao z
一种“天文坐标”。天体在天球上的位置由黄经和黄纬两个坐标表示。春分点的黄经圈与通过某一天体的黄经圈在黄极所成的角度,或在黄道上所夹的弧长,叫做该天体的黄经。计量方向为在黄道上由春分点起,沿着与太阳周年运动相同的方向,从0-360度。从黄道起,沿黄经圈到天体的角距离称为该天体的黄纬。计量方向从黄道起,由0-90度,黄道以北为正。
.................................................
>> 黄极 huang j
天球上与黄道角距离都是90度的两点,靠近北天极的叫“北黄极”。黄极与天极的角距离等于黄赤交角。北黄极在天龙座 与 两星联线的中央。
.................................................
>> 回归年 hui
又称“太阳年”。即太阳视圆面中心相继两过春分点所经历的时间。回归年比恒星年约短20分23秒,回归年长365.2422平太阳日或365日5时48分46秒。对应1900年初回归年长为365.24219892平太阳日,这个数值不是不变的,每百年减少0.53秒。
.................................................
>> 浑天说 hun
中国古人对宇宙的另一种看法,将天和地化作蛋壳和蛋 黄。地是蛋黄,小而圆;天是蛋壳,包围着这个蛋黄。 这种说法提出了地是球形的看法,比盖天说进步了很多 。
.................................................
>> 活动星系 huo
能量极高的星系,中心是一个超大黑洞。
.................................................
汉语拼音引索-J
>> 聚星 ju
三颗或三颗以上靠引力聚在一起的星,称作“聚星”。
.................................................
>> 绝对星等 jue
假定把恒星放在距地球10秒差距(32.6光年)的地方测得的恒星的亮度。
汉语拼音引索-K
>> 开放宇宙 ka
如果一个宇宙质量不大,引力就不足以降低其膨胀速度,会一直膨胀下去,那么这个宇宙就叫开放宇宙。
.................................................
汉语拼音引索-L
>>类地行星和类木行星
太阳系的九大行星中,若按它们的质量、大小和结构特征,则分为类地行星和类木行星两类。
类地行星主要由石、铁等物质组成,体积小,密度大,自转慢、卫星少。属于类地行星的有水星、金星、地球、火星;
类木行星主要由氢、氦、冰、氨、甲烷等物质组成,体积大、密度低,自转相当快、卫星较多,还有由碎石、冰块或气尘组成的环系。属于类木行星的有木星、土星、天王星、海王星。
.................................................
>>类星体
六十年代发现的奇异天体,貌似恒星,却具有极大的红 移。直径小於一光年,但发出的能量竟是等於二百个星 系的总和。根据红移量推算,它们应是在总星系的边陲 。有些推测是宇宙大爆炸後早期形成的星系,但目前迄无定论。
.................................................
>>量天尺
量天尺 ,“造父变星”的别名。要知道两点间的距离,只要拿一把长尺子去一量就可以测出来。天上的星星离开我们很远,星系、星团等天体就离我们更遥远。那么,天文学家又是怎样在地球上知道这些星系和星团离我们的距离的呢?难道他们手中真有这样一把长长的尺子吗?
原来在星系和星团中有一种光度周期变化的变星,典型的是仙王座中一颗我国古称“造父一”的星,所以这种变星称为“造父变星”。 造父变星有一个绝妙的特点,它的光变周期愈长,亮度也愈大;光变周期愈短,亮度亦愈小,这种关系称为“周光关系”。
只要我们在星系或星团中测出一颗造父变星的光变周期,利用周光关系就可知道这颗变星的绝对星等。这颗变星看上去的视星等是很易通过观测知道的。
由于天文学上星星的距离,它的视星等与绝对星等之间有确定的关系。这样只要我们知道了这颗变星绝对星等和视星等,天文学家就可计算出它的距离。 因为这颗变星就在星系或星团里,所以天文学家也就知道了星系或星团的距离了。由于这些变星的光度都很大,它们好像是宇宙中特殊的指路灯塔,以它的变化着的光芒为信号,向我们指示灯塔的距离,好像一把天生的测量天体距离的尺子。所以我们叫它们为“量天尺”。
.................................................
汉语拼音引索-M
>> 脉冲星 ma
能够发出有规律的射电脉冲信号的星球叫做脉冲星。1967年,英国天文学家首次发现了脉冲星。当时甚至于有人认为是一种名叫“小绿人”的外星人给我们地球人的一种信号。原来这种脉冲星是超新星爆炸后形成的中子星,它是半径仅有10千米左右的超高密度星体,是由中子密集在一起,1立方厘米的质量就能有10亿吨!这以一般人的习惯眼光来看真是太不可思议了。脉冲星的自转非常快,例如金牛星座中著名的中国新星1045年爆发后遗留下一片蟹状星云,它的中心就是一颗脉冲星,每秒钟可以自转约30次,所以能以每秒以0.033秒为周期的发出射电波脉冲。中子星的这种自转和辐射,是地球上的观测者,有时看见,有时又看不见,所以才成为脉冲型的恒星。
.................................................
>> 梅西叶星表 me
由110个明亮天体组成的星表,包括星团、星云和星系。
.................................................
>> 米粒组织 mi l
米粒组织是太阳光球层上的一种日面结构。呈多角形小颗粒形状,得用天文望远镜才能观测到。米粒组织的温度比米粒间区域的温度约高300℃,因此,显得比较明亮易见。虽说它们是小颗粒,实际的直径也有1000公里--2000公里。
明亮的米粒组织很可能是从对流层上升到光球的热气团,不随时间变化且均匀分布,且呈现激烈的起伏运动。米粒组织上升到一定的高度时,很快就会变冷,并马上沿着上升热气流之间的空隙处下降;寿命也非常短暂,来去匆匆,从产生到消失,几乎比地球大气层中的云消烟散还要快,平均寿命只有几分钟,此外,近年来发现的超米粒组织,其尺度达3万公里左右,寿命约为20小时。
有趣的是,在老的米粒组织消逝的同时,新的米粒组织又在原来位置上很快地出现,这种连续现象就像我们日常所见到的沸腾米粥上不断地上下翻腾的热气泡。
.................................................
>> 秒差距 mia
指一个距离,等于3.2616光年(3.0857*10^16米),在1秒差距远的地方观察太阳系,日地距离最大时正好是一角秒。
.................................................
汉语拼音引索-N
>> 逆行 ni
从地球上看,行星正常的运动是自西向东,与此相反的视运动叫逆行,是由行星与地球的相对运动决定的。
汉语拼音引索-P
>> 平太阳时 ping tai
由于太阳在黄道上作变速运动,而黄道又向赤道倾斜,所以一年四季的真太阳日长短不等,在日常生活中使用不便。天文学上假设一个假想点,它每年和真太阳同时从春分点出发,也同时回到春分点来;不过它是从西向东在天球赤道上以均匀速度运行。这样的一个假想点叫平太阳。平太阳连续两次经过上中天的时间间隔,叫做平太阳日。1平太阳日有分为24平太阳时……等等。这个施加系统称为平太阳时,简称平时。平时是以平太阳下中天起算的,平太阳时定义为:平太阳的时角加12小时。
.................................................
>> 平坦宇宙 ping tan
所拥有的物质足以使膨胀速度减缓,但又不发生坍缩的宇宙。
.................................................
>> 谱斑(见“光斑”) pu b
.................................................
>> 普朗克长度 pu lang ke chang d
经典的引力和时空开始失效、量子效应起支配作用的长度标度。它是“长度的量子”,即仍有意义的最小可测长度。普朗克长度由引力常数、光速和普朗克常数的相对数值决定,它大致等于10的-33次方厘米,是一个质子大小的10的20次方分之一。
.................................................
>> 普朗克常数 pu lang ke chang s
将光子的能量和它的频率联系起来——即将量子实体的粒子性与它的波动性联系起来的一个基本常数,用符号h代表。h的数值是6.626*10的-34次方焦耳·秒。
语拼音引索-Q
>> 奇点 qi
黑洞中心无限致密的点。
.................................................
>> 球状星团 qiu
由成千上万颗、甚至几十万颗恒星密集而成的集团,因为呈球对称或接近球型而得名,其半径从10秒差距到75秒差距。银河系中约有五百个球状星团,全天最亮的球状星团为半人马座ω(NGC5139),北半天球最亮的球状星团是M13。球状星团在银河系中呈球状分布,属晕星族。球状星团和银核一样,是银河系中恒星分布最密集的地方,这里恒星分布的平均密度比太阳附近恒星分布的密度约大50倍,中心密度则大到1000倍左右。球状星团以偏心率很大的巨大椭圆轨道绕着银心运转,轨道平面与银盘成较大倾角,周期一般在三亿年上下。球状星团的成员星是银河系中形成最早的一批恒星,年龄大约在一百亿年。在球状星团中发现的变星中主要是天琴座RR变星,其余多半是星族II造父变星,因此一些球状星团的距离可以被较为精确的计算出来。已发现的一些球状星团在银河系的外面,如 NGC2419离银心的距离大于大麦哲伦云离银心的距离,处于星际空间。在一些距离我们较近的河外星系中也发现有球状星团。
汉语拼音引索-R
>> 日浪
冲浪又称“日浪”。太阳光球层物质的一种抛射现象。通常发生在太阳黑子上空,具有很强的重复出现的本领,当一次冲浪沿上升的路径下落后,又会触发新的冲浪腾空而起,如此重复不断,但其规模和高度则一次比一次小,直至消失。
位于日面边缘的冲浪表现为一个小而明亮的小丘,顶部以尖钉形状向外急速增长。上升的高度各不相等,小冲浪只有区区几百公里,大冲浪则可达5000公里,最大的竟达1~2万公里。抛射的最大速度每秒可达100~200公里,要比最快的侦察机快100多倍。当它们到达最高点后,受太阳引力的影响,便开始下降,直至返回到太阳表面。人们从高分辩率的观测资料中发现,冲浪是由非常小的一束纤维组成,每条纤维间相距很小,作为整体一起发亮,一起运动。
...................................................
>> 日心说
一五四三年,波兰天文学家哥白尼经过四十多年的观测 和研究,提出了日心说。太阳是宇宙的中心,地球也会 自转。它的解释比地心说的复杂运动解释要简单得多; 同时它建立了人类比较正确的太阳系概念,使人类对宇 宙的认识起了很大的改变。
...................................................
>> 儒略日和恒星时
其实在天文学家的眼里,我们目前采用的计时方法实在是既不科学也不好用. 所以,在天文学家那里,采用了儒略日与恒星时. 儒略日是一种不用年月的长期纪日法,简写为JD.从公元前4713年(天文学上记为 -4712年)1月1日格林尼治时间平午(12:00)起算,连绵不绝.如果要知道相隔若干年的 两天之间的天数,用它就很方便了. 恒星时是春分点距子午圈的时角,所以准确的说,它并非一种计时方法.对应于地球 上每个地方子午圈都存在一种地方恒星时.
...................................................
汉语拼音引索-S
>> 三垣四象二十八宿 sa
是我国古代对星空的划分,它们的起源远在周、秦以前。三垣是北天极周围的三个区域,即紫微垣、太微垣和天市垣。四象分布于黄道和白道近旁,环天一周。每象各分七段,称为“宿”,总共为二十八宿。它们是:东方苍龙之象,含角、亢、氐、房、心、尾、箕七宿;南方朱雀之象,含井、鬼、柳、星、张、翼、轸七宿;西方百虎之象,含奎、娄、胃、昴、毕、觜、参七宿;北方玄武之象,含斗、牛、女、虚、危、室、壁七宿。
.................................................
>> 时差 shi cha
视时和平时的差数叫做时差,即:时差=视时-平时。时差有时为正,有时为负,它在一年中由-14.3分变化到+16.4分,并有四次等与零。
.................................................
>> 视差 shi cha
从不同的角度观测,一个天体在遥远背景上的位移。
.................................................
>> 世界时 shi j
1884年国际上决定,全世界的地理经度是从英国的格林尼治天文台的子午线(称本初子午线)起算的。格林尼治地方时常用特定符号来表示:S表示格林尼治地方恒星时,M表示格林尼治地方平时。。格林尼治地方平时又称为世界时,每天从子夜算起,由0时计算到24时。世界时与地方平时之间的关系为:地方平时=世界时±经度(东经用+,西经用-)
.................................................
>> 疏散星团 shu
通过望远镜可以分辨出单颗恒星的恒星成团结构,大多数位于银道面附近,因而也成为银河星团,它们是属于星族I的天体,形状大致为球型,半径从小于1秒差距到约10秒差距,包含的星数从几十个到1000颗以上。目前在银河系内已发现一千多个疏散星团,估计总数量接近两万个。因为银道面附近星际消光教大,我们无法观测到离太阳较远的银河星团。在赫罗图上各个星团的主星序下部重合在一起,上部则向右方作不同程度的转向。不同星团的转向点的位置各不相同。按照恒星演化的观点,质量大的恒星演化较快,质量小的演化较慢,因为同一星团中恒星的年龄大致相同,所以,星团中质量大的高光度恒星已经离开主星序,这就说明:转向点越向下,星团的年龄越老,反之星团越年轻,对于十分年轻的星团来说,其中高光度的恒星已经位于主星序,而低光度的恒星尚未到达,仍处于主星序右方。利用不同年龄的星团的赫罗图构成标准主星序,可以测定整个银河星团和其中已知光谱型的恒星的距离。
关于银河星团的分类,大都采用瑞士天文学家特郎普勒提出的方法,即根据赫罗图的形状把星团分为三类,每类又分为几个小的类型。第一类只有主序星,其中又根据星团中光谱型最早的恒星的光谱型分成几个小类型,如果星团由O型星开始,就称为1o型,由B型开始,就称为1b型,然后依次为1a和1f型等。第二类除主序星外还有一些黄色和红色的巨星,依次再分为2o,2b,2a,2f等。第三类主要是黄色和红色的巨星,称为3o,3b,3a,3f等。已发现的星团主要是1o,1b,2a三种类型。
.................................................
>> 双星shua
不但看上去离得近。实际距离也很近的两颗星,通过万有引力互相吸引,彼此围绕着对方不停地旋转。只有这种关系,才能称作现代天文学意义上的双星。天文学上把双星中比较亮的一颗称为主星,比较暗的那颗称为伴星。
.................................................
>> 岁差 su
地球就象是一个旋转的陀螺,而陀螺在转动时,它的轴并不是垂直于地面完全不动的,而且在微微晃动,这种现象在物理学上称为“进动”。地球也是这样,它的自转轴在天空中的方向是不断变化的,并不总是指向某一固定点,这在天文学上叫做岁差。
.................................................
汉语拼音引索-T
>> 太阳黑子 ta
人们平常看到的太阳表面层,叫做光球,它是太阳大气最下面的一层。从光学望远镜中可以看到,光球上经常出现一些旋涡状的气流,像是一个浅盘,它的中间凹进去好几百千米。这些旋涡状气流很像大小不等的、形状很不规则的窟窿,很黑很黑,这就是天文学家所说的太阳黑子。黑子本身并不黑,它的温度一般也有四五千摄氏度,但是比起光球来,它的温度要低一二千摄氏度,在更加明亮的光球衬托下,它就成为看起来像是没什么亮光的、暗黑的黑子了。假设光球上百分之百地覆盖着黑子,太阳仍旧会是相当亮的,只是比现在看到的稍微暗一些罢了。
...................................................
>> 天赤道和天极 tian c
延伸地球赤道而同天球相交的大圆称为“天赤道”。向南北两个方向无限延长地球自转轴所在的直线,与天球形成两个交点。分别叫作北天极与南天极。天赤道和天极是天球赤道坐标系的基准。
...................................................
>> 天球 tian q
人们为了便于研究天体,假想以空间任意点为中心,以无限长为半径所作的球。
...................................................
>> 天体的自行“自行” tian t
人们肉眼可以看到的星有6000多颗。这些星可以分为两类:一种是行星,也就太阳系的九大行星。古人观测天空,只看到离我们最近的水星、金星、火星、木星、土星,古人发现这五颗星的位置总在变化,这说明它们在天上不停地走来走去(这种走动按现在的说法就是行星的公转),因此称它们为“行”星。而对于另一类星,它们在天上的位置看上去总是固定不变(当然,这得排除地球自转、公转造成的星星们看上去“变动”),所以称它们为“恒” 星。
随着科学的发展,人们逐渐认识到宇宙中的运动是绝对的,而“静止”永远是相对现象。大量观测表明,恒星并不是不变的,它们也在运动。天文学上称之为恒星的 “自行”其实,恒星的运动如果与视线平行,我们是看不出来的。所以,自行的真正定义应该是恒星运动垂直于视线的分量。
恒星自行的绝对速度并不慢,往往比行星的运动速度快得多,只不过除太阳外的恒星离我们都太遥远了,它们跑得再快,从地球上看去也跟静止差不多。但经过上万年之后,恒星的位置变化就会较为明显。
...................................................
>> 天文单位 tian w
量度距离的一种单位,符号是AU,规定日地距离为一个天文单位,即1.5亿千米。
...................................................
汉语拼音引索-W
>> 微波背景辐射
本世纪六十年代,美国两位科学家彭齐亚斯和威尔逊在 改善卫星通讯的过程中,无意中发现了宇宙背景的三K (绝对温度)微波辐射,其特点是同向性,即是这些辐 射在宇宙间的各个方向都是一样。微波背景辐射是热大 爆炸宇宙学说的客观证据之一,当时所量得的温度与学说预计的相约。
...................................................
汉语拼音引索-X
>> 吸积盘 xi
是一个受恒星或黑洞引力作用的物质盘,最终将落到中心的恒星或黑洞中去。
.................................................
>> 小行星 xia
小行星是太阳系家族中的一类成员,它们的“个头”比大行星的卫星还小得多,一般分布在火星和木星的轨道之间--小行星带。它们的特点是体积小、质量小,最大的小行星直径还未超过800公里。它们和大行星一样,沿着椭圆轨道绕太阳运行。自1801年意大利天文学家皮亚齐偶然地发现第一颗小行星谷神星后,至今已发现了上万颗小行星,而正式注册、取得太阳家族“公民权”的小行星到1994年底已达5300多颗。
.................................................
>> 新星 xin
一类能爆发的恒星,爆发时,光度能暂时上升到原来正常光度的数千乃至上万倍。在爆发后的几个小时内,新星的光度就能达到极大,并且在数天或数周内保持较高亮度,随后又会缓慢的恢复到原来的亮度。这种星一般都很暗,爆发前肉眼看不到,光度的突增有时会使它们在夜空中很容易被看到,对观测者来说,这种天体就好象是新诞生的恒星。据认为,大多数新星都存在于两颗子星彼此靠的很近并互相绕转的双星系统中,这种通常被称为密近双星的系统是由两颗年龄不同的子星构成,一颗是红巨星,一颗是白矮星。在某些情况下,红巨星会膨胀到子星的引力范围内,引力场极强的白矮星会把红巨星的大气物质“吸食”到自己表面,当这种物质在白矮星表面积累到一定程度后,就会发生核爆炸,导致相当与几十个地球的表面热气体被抛出。爆炸过后,白矮星恢复平静,但引起爆炸的过程则一直重复下去,结果是在过几年或几十年几百年又产生新的爆炸。
.................................................
>> 星等 xing d
1850年,英国天文学家普森提出的衡量天体亮度的单位.一个星等规定为亮度比的2.512倍,如5等星比六等星亮2.512倍,因此星等相差5等亮度便差100倍,由于星等范围太小,又引入了负星等,来衡量极亮的天体.视星等是地球上的观测者所见的天体的亮度,太阳的视星等为-26.7等,满月约为-11等,天狼星为-1.5等.绝对星等是在距天体10秒差距(32.6光年)处所看到的亮度,太阳的绝对星等为4.8等;热星等是测量恒星整个辐射,而不是只测量一部分可见光所得到的星等;单色星等是只测量电磁波谱中某些范围很窄的辐射而得的星等;窄频带星等是测量略宽一点的频段所得的星等;宽频带星等的测量范围更宽;人眼对黄色最敏感,因此目视星等也可称为黄星等.
星等是天文学上对星星明暗程度的一种表示方法,记为m。天文学上规定,星的明暗用星等来表示,星等数越小,说明星越亮,星等数每相差1,星的亮度大约相差2.5倍。我们肉眼能看到的最暗的星是6等星(6 m)。天空中亮度在6等以上(即星等数小于6),也就是我们可以看到的星有6000多颗。当然,每个晚上我们只能看到其中的一半,3000多颗。满月时月亮的亮度相当于-12.6等(在天文学上写作-12.6m);太阳是我们看到的最亮的天体,它的亮度是-26.7m;而当今世界上最大的天文望远镜能看到暗至24m的天体。我们在这里说的“星等”,事实上反映的是从地球上“看到的”天体的明暗程度,在天文学上称为“视星等”。太阳看上去比所有的星星都亮,它的视星等比所有的星星都小的多,这只是沾了它离地球近的光。更有甚者,象月亮,自己根本不发光,只不过反射些太阳的光,就俨然成了人们眼中第二亮的天体。天文学上还有个“绝对星等”的概念,这个数值才能真正反映了星星们实际发光本领。
.................................................
>> 星名 xing m
对于一些较亮的星,我国古代都起了专名,如天狼、老人、织女、大陵五、轩辕十四和北落狮门等等。现在国际通用的明明发是在星座名称只后家希腊字母,按希腊字母的次序分别表示该星座里最亮、次亮……等(偶有例外)。如大犬座α(天狼),大犬座β……等,希腊字母用完后,在用拉丁字母几阿拉伯数字。更暗的星也有采用赤经赤纬命名的。对于变星则另有专门规定。
.................................................
>> 星团 xing t
如果聚星的成员超过了10个,一般就称之为“星团”。
.................................................
行星运动定律 xing xing y
行星运动定律是指行星在宇宙空间绕太阳公转所遵循的定律。由于是德国天文学家开普勒根据丹麦天文学家第谷·布拉赫等人的观测资料和星表,通过他本人的观测和分析后,于1609~1619年先后早归纳提出的,故行星运动定律即指开普勒三定律,
被称为“星子之王”的第谷·布拉赫在天体观测方面获得不少成就,死后留下20多年的观测资料和一份精密星表。他的助手开普勒利用了这些观测资料和星表,进行新星表编制。然而工作伊始便遇到了困难,按照正圆轨道来编制火星运行表一直行不通,火星这个“狡猾家伙”总不听指挥,老爱越轨。经过一次次分析计算,开普勒发现,如果火星轨道不是正圆,而是椭圆,那么矛盾不就烟消云散了吗。经过长期细致而复杂计算以后,他终于发现:行星在通过太阳的平面内沿椭圆轨道运行,太阳位于椭圆的一个焦点上。这就是行星运动第一定律,又叫“轨道定律”。
当开普勒继续研究时,“诡谲多端”的火星又将他骗了。原来,开普勒和前人都把行星运动当作等速来研究的。他按照这一方法苦苦计算了1年,却仍得不到结果。后来他发现,在椭圆轨道上运行的行星速度不是常数,而是在相等时间内,行星与太阳的联线所扫过的面积相等。这就是行星运动第二定律,又叫“面积定律”。
开普勒又经过9年努力,找到了行星运动第三定律:太阳系内所有行星公转周期的平方同行星轨道半长径的立方之比为一常数,这一定律也叫“调和定律”。
.................................................
>> 行星状星云 xing xing z
发射星云的一种。在望远镜中大都具有象天王星或海王星那样的略带绿色而有明亮边缘的小圆面,因此赫歇尔在1779年发现这类天体后称它们为行星状星云。用大望远镜观察显示出行星状星云有纤维、斑点、气流和小弧等复杂结构。它们主要分布在银道面附近,受到星际消光的影响,大量的行星状星云被暗星云遮蔽而难以观测,根据太阳附近的分布密度(约每千立方秒差距三十到五十个)估计,整个银河系中应该有四五万个,现在观测到的只是其中很小的一部分。
行星状星云的质量在十分之一到一个太阳质量之间,星云中的密度在每立方厘米100-10,000个原子(离子)之间。行星状星云的中心星都是温度很高的(大于等于30000K),星云吸收它发出的强紫外辐射通过级联跃迁过程转化为可见光。行星状星云象征着一颗恒星到了晚年,估计行星状星云的寿命平均为三万年左右,星云气体逐渐扩散消失于星际空间,仅留下一个中央白矮星。
.................................................
>> 星云 xing y
宇宙空间的很多区域并不是绝对的真空,在恒星际空间内充满着恒星际物质。恒星际物质的分布是很不均匀的,其中宇宙尘埃物质密度较大的区域(此密度仍然远远小于地球上的实验室真空)所观测到的是雾状斑点,称为星云。星云类型主要有“亮星云”和“暗星云”两种。
.................................................
>> 星族 xing zu
银河系以及任何一个河外星系内大量天体的某种集合。这些天体在年龄、化学组成、空间分布和运动特性等方面十分接近。银河系所有天体分为五个星族:晕星族(极端星族Ⅱ),中介星族Ⅱ,盘星族,中介星族Ⅰ(较老星族),旋臂星族(极端星族Ⅰ)。晕星族分布如一个球状的晕,包住银河系;在银河系恒星聚集较密的盘状部分,当然也有晕星族的天体,但主要是盘星族和星族Ⅰ。晕星族由银河系中最古老的天体所构成,其中包括球状星团、亚矮星和周期长于0.4天的天琴座RR型变星(周期更短的天琴座RR变星属盘星族)。
中介星族Ⅱ的主要代表是垂直于银道面速度超过30公里每秒的高速星以及周期短于250天、光谱型早于M5的长周期变星。盘星族包括银核内的恒星、行星状星云和新星。中介星族Ⅰ包括光谱中出现较强的金属线的恒星和A型星,极端星族Ⅰ集中分布在银道面附近,银面聚度最大,主要为旋臂中的年轻星如O型星、B型星、超巨星以及一些银河星团和星际物质等。
各星族的年龄相差很大。晕星族最老,其中球状星团的年龄在100亿年左右;从中介星族Ⅱ、盘星族和中介星族Ⅰ到最年轻的旋臂星族,年龄依次递减。各个星族在化学组成上也有差别。一般来说,较老的星族所含有的重元素百分比要比年轻星族的低。这种差别可以用恒星演化过程加以解释,恒星进入晚年期后向外抛射物质,使恒星内部核过程所形成的重元素渗入星际物质中去,这种被“加重”的星际物质形成的恒星,其重元素含量就会相应增高,因此越是年轻的恒星包含的重元素就越多。星族概念在研究银河系的起源和演化问题上起着重要作用。
.................................................
>> 星座 xing zuo
为了便于认识星座,古人将天球划分为许多区域,叫做星座。每一星座可由其中亮星的特殊分布而辨认出来。现在国际通用的共有的放88座,他们的界线大致是平行和垂直于天赤道的弧线。我国古代将星空分为三垣和二十八宿。
.................................................
>> 宣夜说 xu
也是中国古人对宇宙的另一种看法,认为天体是漂浮於 太空中,不会固定在一个球面上。照此来看,宇宙是无限的,并不存在硬壳式的球面。这种无限的宇宙观对认 识宇宙来说,更是一个进步。
汉语拼音引索-Y
>> 掩星 ya
一个天体(例如一颗恒星)被另外一个天体(例如月亮)所遮掩。
................................................
>> 引力透镜 yi
从遥远的辐射源发出的辐射受到某种质量的引力场(例如星系)的作用所发生的弯曲。
................................................
>> 月谷 yue g
月球表面一种地形构造。月面上不少地区曾发现一些黑色大裂缝,弯弯曲曲延伸数百公里,宽几公里到几十公里 好像浩浩荡荡奔赴海洋的河流,形状与地球上的东非大裂谷相似,称之为月谷。
较宽大的月谷大多出现在月陆上较平坦的地区;最大的里塔月谷位于南海东北部,詹森环形山东面的月陆上,总长达500公里;最宽的莫希拉米月谷在东海盆地南边,巴德环形山附近的月陆上,约有40~55公里。而那些较窄、较小的月谷(有时称为“月溪”)则到处都有。
最著名的月谷是阿尔卑斯大月谷,从柏拉图环形山东南一直“流入”平坦的雨海和冷海,它把月面上的阿尔斯山脉拦腰截断,很是壮观。从太空拍得的照片资料估计,它长达130公里,宽达10~12公里。
月谷往往有一定的走向,它的产生原因是一个很有意义的值得研究的课题。根据“阿波罗-15”号宇宙飞船获得的资料分析,月谷可能是由顺山而下的岩浆形成的。
................................................
>> 月海 yue h
月面上的暗灰色地区,古代人以为这些阴暗区域是被海水覆盖着,便定名为“月海”。事实上所谓的月海连一滴水也没有,那里只是一些平坦广阔的平原,是月面上低凹的区域。上面堆积着厚度不匀的疏松尘土。由于这些尘土反射太阳光的本领比质地紧密的山脉要差得多,在人们的视觉中就显得比较阴暗。
现在已知整个月球表面著名的有雨海、静海、危海、澄海、丰富海等22个月海,在月亮向着地球的一面,月海面积占整个半球的一半。其中向着地球这面有19个,背着地球那面有3个。最大的月海叫“风暴洋”,位于月球的东北部,面积达500万平方公里,相当于我国面积的一半。雨海面积约为90万平方公里;月面中央的静海约有26万平方公里,月海四周是山脉,大多呈封闭的圆形;比月海小的阴暗区域叫做“湖”,有梦湖、死湖等5个。另外,月海伸向陆地的阴暗区域叫做“湾”和“沼”,有中央湾、虹湾等5个,腐沼等3个。
美国“阿波罗”宇宙飞船曾6次在月海上登陆,如“阿波罗-11”号、“阿波罗-17”号着陆于静海,“阿波罗-12”号着落于风暴洋。12名宇航员身穿宇航服,在“海面”上行走,并留下一串串约3厘米深的脚印,发现月面的尘土是近于灰色的纤细粉末,有点像带有粘性的木炭屑。
至今留在月球表面上12名宇航员的脚印,根据美国科学家的估计,如果不受陨星的撞击,将留存50万年之久。这是因为月球表面没有大气层,也就不会有风、雨、霜、雪等天气现象发生,而影响脚印的留存。而侵袭月球表面物质的宇宙射线,对月球的影响是微乎其微的。因而美国科学家的这一估计是有科学依据的。
................................................
.>> 月相 yue x
随着月亮每天在星空中自西向东移动一大段距离,它的形状也在不断地变化着,这就是月亮位相变化,叫做月相。“人有悲欢离合,月有阴晴圆缺”,这里的圆缺就是指“月相变化”:在地球上所看到的月球被日光照亮部分的不同形象。
由于月球本身不发光,在太阳光照射下,向着太阳的半个球面是亮区,另半个球面是暗区。随着月亮相对于地球和太阳的位置变化,就使它被太阳照亮的一面有时对向地球,有时背向地球;有时对向地球的月亮部分大一些,有时小一些,这样就出现了不同的月相。
每当月球运行到太阳与地球之间,被太阳照亮的半球背对着地球时,人们在地球上就看不到月球,这一天称为“新月”,也叫“朔日”,这时是农历初一。   过了新月,月球顺着地球自转方向运行,亮区逐渐转向地球,在地球上就可看到露出一丝纤细银钩似的月球,出现在西方天空,弓背朝向夕阳,这一月相叫“蛾眉月”,这时是农历初三、四。
随后,月球在天空里逐日远离太阳,到了农历初七、八,半个亮区对着地球,人们可以看到半个月亮(凸面向西),这一月相叫“上弦月”。
当月球运行到地球的背日方向,即农历十五、十六、十七,月球的亮区全部对着地球,我们能看到一轮圆月,这一月相称为“满月”,也叫“望”。
满月过后,亮区西侧开始亏缺,到农历二十二、二十三,又能看到半个月亮(凸面向东),这一月相叫做“下弦月”。在这一期间月球日渐向太阳靠拢,半夜时分才能从东方升起。
又过四五天,月球又变成一个蛾眉形月芽,弓背朝向旭日,这一月相叫“残月”。
当月球再次运行到日地之间,月亮又回到“朔”。
月相就是这样周而复始地变化着。如果用月相变化的周期(即一次月相变化的全部过程)来计算,从新月到下一个新月,或从满月到下一个满月,就是一个“朔望月”,时间间隔约29.53天, 中国农历的一个月长度,就是根据“朔望月”确定的。
汉语拼音引索-Z
>> 造父变星 za
一类高光度周期性脉动变星,典型星为仙王座δ,中名造父一。光变周期约50天,但也有超过的,如银河系经典造父变星武仙座BP的周期为83.1天;小麦哲伦云中的经典造父变星周期长达二百天。造父变星可见光波段的光变幅度为0.1到2个星等,光谱由极大时的F型变到极小时的G-K型。它们的光变曲线正好是变星大气视向速度曲线的镜像反映,即极小光度对应着极大视向速度。光度和光变周期之间存在着密切关系,成为周光关系。这种关系可用来建立天体的距离尺度,利用造父变星的周光关系来测定天体距离是天文学中非常重要的课题,只要在星团或星系中发现有造父变星,就可以确定星团或星系的距离,因此,造父变星有“量天尺”之称。
.................................................
>> 真太阳时 zhe
太阳视圆面中心连续两次上中天的时间间隔叫做真太阳日。1真太阳日又分为24真太阳时……等等。这个时间系统称为真太阳时。真太阳时是以真太阳视圆面中心的时角来计量的,它的起算点是真太阳上中天,而我们日常生活中,习惯的起算点是半夜(下中天),正好相差12小时。因此,为了和人们的日常生活习惯一致,把真太阳时定义为:真太阳视圆面中心的时角加12小时。因为真太阳时是观测太阳视圆面中心得到的,所以真太阳时也称为视太阳时,简称视时。
.................................................
>> 中微子天文学 zhong w
天体物理的一个分支,主要研究恒星上可能发生的中微子过程以及这些过程对恒星的结构和演化的作用。中微子是不带电的静止质量为零或很小的基本粒子。它和一般物质的相互作用非常弱,除特殊情况外,在恒星内部产生的中微子能够不受阻碍地跑出恒星表面,因此探测来自恒星内部的中微子可以获得有关其内部的信息。最早的研究集中在太阳。太阳的能源主要来自内部的质子-质子反应,因而会产生大量的中微子。美国布鲁克海文实验室的戴维斯等人用大体积四氯化碳作靶,利用37Cl俘获中微子的反应来探测太阳的中微子发射率。实测的结果远远小于恒星演化理论的太阳标准模型的预期值,这就是著名的中微子失踪案。近年来人们发现原来使用的恒星大气中元素的不透明度太小,改进后已有所改善。进一步日震研究改进了太阳内部结构,从而大大地缓和了这个矛盾。另一个可能是中微子有很小的静质量。果如此则可以解释宇宙中的质量短缺问题。
中微子还大量地产生于超新星爆发时和宇宙中其它物理过程中。在日本的一个矿井和美国的俄亥俄用一个巨大的水容器来探测切连可夫辐射,从而探测到了来自超新星SN 1987A的中微子辐射。欧洲共同体的GALLEX和俄国的一个装置利用中微子和镓的相互作用来探测中微子。
.................................................
>> 中子星 zhong z
1932年发现中子后不久,郎道就提出可能有由中子组成的致密星。1934年巴德和兹威基也分别提出了中子星的概念,并且指出中子星可能产生于超 新星爆发。1939年奥本海默和沃尔科夫通过计算建立了第一个中子星的模 型。1967年,英国射电天文学家休依什和贝尔等发现了脉冲星。不久,就 确认脉冲星是快速自转的、有强磁场的中子星。 典型中子星的外层为固体外壳,厚约一公里,密度高达每立方厘米一千亿 克以上,由各种原子核组成的点阵结构和简并的自由电子气组成。外壳内 是一层主要中子组成的流体,在这层还有少量的质子、电子和m介子。对于 中子星内部的密度高达10亿亿克每立方厘米的物质态,目前有很多不同的 看法:①超子流体;②固态的中子核心;③中子流体中的p介子凝聚。在极 高密度下,当重子核心彼此重迭得相当紧密时,物质的性质如何是一个完 全没有解决的问题。中子星的质量下限约为0.1太阳质量,上限在1.5-2太 阳质量之间。中子星半径的典型值约为10公里。根据李政道等提出的反常 核态理论,可能存在稳定的反常中子星,它们可能是晚期恒星的一个新的 类型或新的阶段,致密星可能有第三个质量极限,即反常中子星的极大质 量,约为3.2太阳质量。
.................................................
蛀洞 zhu d
1985年夏,美国著名科幻作家卡尔·萨根完成了他的新作《接触》。在该作尚未刊出之前,他将原稿送交加利福尼亚理工学院的基普·索恩博士,希望能为科幻小说中的时间旅行寻找一个合理的解释。此时索恩正在指导两名青年作哲学博士论文,索恩即以萨根提出的问题作为试题,带领两位研究生进行探讨,并将其研究成果发表在美国物理学会的《物理评论通讯》上。索恩等认为:从理论上来说,利用他们发现的大尺度蛀洞的新特征,人们不仅可以缩短星际旅行的时间,还可以返回过去。
蛀洞作为一种新的概念,提出已经有70多年了。当爱因斯但提出广义相对论之后不久,物理学家就开始对蛀洞发生兴趣。大尺度蛀洞是爱因斯但广义相对论场方程的一个解,它标志着一种空间和时间的几何结构。在这种结构中,宇宙的两个区域是由短而窄的"咽喉状部分"相连接。1916年卡尔·施瓦兹奇尔德解爱因斯但广义相对论场方程得到的施瓦兹奇尔德蛀洞具有动态结构。蛀洞由零半径膨涨到最大半径,然后又收缩回零。这一过程进行得极快,即使以光速运动也无法从一个孔口到达另一孔口。此外,蛀洞有很强的引力,当人们离它还有相当的距离时就会被引力撕成碎块。这样的蛀洞当然不能作为旅行的通道。
索恩等入构思了可通行蛀洞的几何结构,其咽喉部保持开放,人们通过时只受到适度的加速度和潮汐力。爱因斯坦的场方程表明,任何可通行的蛀洞一定含有某种形式的奇异物质。这种奇异物质具有"负压力",有点象被拉长的弹簧,现在还没有人知道这种物质是否存在。假如这种物质存在,它与其它物质的相互作用很弱,又不会伤害旅行者,那么可通行的蛀洞就有存在的可能性。索恩从研究爱因斯坦场方程出发,发现了大尺度蛀洞的新特征,为萨根的科幻小说找到了理论解释。如果我们能找到索恩所构想的那种蛀洞,便可以将蛀洞的一个边洞口开在太阳附近,另一边洞口开在天琴座织女星附近,乘火箭沿蛀洞作星际旅行,在短时间内到达距离为25光年的织女星。瞧,科幻小说成了科学研究的先导。当然这一切仅仅是理论的延伸,到目前为止还没有一个人观察到蛀洞。但当人们通过计算预见到海王星的存在时,没有一个人能观察到海王屋,而现在观察海王星不是什么了不起的事情了。
索恩的研究成果也为萨根科幻小说中时间旅行找到了一个合理的解释。假设蛀洞有A、B两个洞口,使B洞口作加速运动,其速度接近光速,而A洞口保持静止,根据狭义相对论所测预的效应,B洞口的时钟慢于A洞口的时钟。这时乘火箭以接近光速的速度从A洞口向B洞口行进,到达B洞口的时刻比从A洞口出发时提前了。此时立刻通过蛀洞返回,到达出发点A洞口的时刻比离开时还要早。也就是说10点钟时你从A洞口向B洞口以接近光速的速度运动,而到达B洞口时,时间却是9点钟,立刻穿过蛀洞回到A洞口,还不到10点种,这样通过蛀洞就完成了一次逆时而行的旅行。在这里索恩的科学推断与萨根的科学幻想似乎很好地吻合在一起了,然而科学推断与科学幻想之间是有很大的不同。科学幻想可以避开许多难以解决的具体问题,把它留给后人去研究,而科学推断必须面对这些难题,逆时旅行要重新评估自然现象中的因果关系和时间演变的概念。例如,当你在逆时旅行中如果遇见了你出生前的父母,当你试图向他们开枪射击时,就会出现难以解决的问题:如果击中身亡,那么你是如何来到世上?科学家认为必须采取一些基本原理来使自然系统的演变不会自相矛盾,即采用相容性原理来补充因果律。就是说枪不是不发火就是未命中。
自从索恩发表了大尺度蛀洞新的特征之后,引起了不少物理学家的关注,一些学者提出了新的假设。也有一些人提出许多疑点,认为蛀洞理论不可能成立,因为它不仅破坏了物理学的大前题--因果律,而且还会动摇许多物理学的定律,至少从目前人类的认识来看,蛀洞的存在还有很大的不确定性。
.................................................
>> 主序星 zhu x
当恒星能产生热核反应 其内外压力稳定下来 达到平 衡的时期 这个时期占去恒星的颇长时间 我们称处於 这个阶段的恒星为主序星 大的恒星寿命较短促 小的 则较长 我们的太阳在主序星阶段约为一百亿年 现在 才活了五十亿年 还有五十亿年才踏上红巨星的阶段
.................................................
自行 zi x
自行, 恒星在一年内沿垂直于观测者视线方向走过的距离对观测者所张的角度。天上的星星看上去是不动的,年复一年我们总在一定的时间里能见到它们。但是,如果我们用天文望远镜去精细地测量它们的位置,并与过去得到的结果相比较,就会发现它们的位置是不一样的,这是由于自行的结果。
星星的自行一般都很小。要比较相隔几十年的观测结果才能求得,而且星星距离我们愈远,自行愈小。但是,到目前为止,也发现了少数自行值大的星星。其中有400多颗星的自行每年等于或大于1角秒,有50颗星的自行每年大于2角秒。
.................................................
>> 紫外天文学 zi wa
利用天体在100到4000埃的紫外波长的辐射来研究天文现象的学科。由于大气对紫外波段的吸收十分严重,因此需要到高空或大气外进行观测。由于氢原子赖曼线系限外的连续吸收以及光学天文学的交叉,紫外天文学的研究范围实际上只限于912~3000埃之间。由于元素的中性和电离态的共振线在紫外区比在可见光区丰富得多,共振线对研究天体的物理状态和化学组成极为敏感,因此我们很有必要把观测波段扩大到紫外区。当然第一个研究对象是太阳,对研究色球和日冕间过度层以及耀斑活动提供了有价值的信息。对太阳系内的行星和彗星等天体的紫外光谱、反照率和散射的观测,有利于确定它们大气组成,从而建立大气模型。
我国天文学家余青松在20世纪30年代首先认识到紫外波段的观测对研究热星的重要性。
1978年1月28日发射的IUE地球同步卫星载有一架口径45厘米的卡塞格林望远镜和两台摄谱仪(高色散和低色散),工作于1150-4000埃间。发现了大量的紫外天体并编辑出版了IUE星表。在1990年6月1日发射的ROSAT卫星上还载有EUV(极端紫外)望远镜,探测能量在25-100电子伏特间的源。结果共发现384个源,其中主要为白矮星和晚型活动星。其他为激变变星和河外天体。1992年6月7日发射了EUVE(极紫外探测者)卫星。上载三个掠射扫描望远镜和一个谱望远镜(50-740埃)。发现的天体中55%为晚型星,30%为白矮星,其他为激变变星、早型星和河外天体。最亮的源为εCMa,一个光谱型为B2II的蓝巨星。目前正在天上工作的哈勃空间望远镜也有紫外观测仪器,是这一领域中的最大者。
.................................................
>> 子午线 zi wu
想象中在天空上经过天顶连接正南和正北点的连线。
.................................................
>> 总星系 zo
现时所测得星系总数的统称,也是现时我们可见的宇宙 。总星系的边陲并不是宇宙的尽头,只是我们的技术不 能探索到更深远的新世界,我们要不断的改善技术去发 掘这个新世界。

星空的秘密(这些天文知识你知道吗?)
如果一个人能对着天上的事物沉思,那么在他面对人间时就会更加高尚。
中子星和黑洞:
中子星和黑洞是宇宙中密度和引力最强大的两类颇具神秘感的天体。光是中子星就已经够不可思议了,偏偏还要添上黑洞。它是宇宙中的死亡陷井和无底深渊,没有物质能摆脱它的强大引力,包括光线。在它附近,今天的所有物理定律都显得不适用了。

我们知道,当恒星走完其漫长的一生后,小质量和中等质量的恒星将成为一颗白矮星,大质量和超大质量的恒星则会导致一次超新星爆发。超新星爆发后恒星如何演变将取决于剩下星核的质量。印度天体物理学家昌德拉塞卡于上世纪三十年代末发现,当留下的星核质量达到太阳的一点四倍时,其引力将大到足以把星核内的原子压缩到使电子和质子结合成中子的程度。此时这颗星核就成了一颗中子星,其密度相当于把一个半太阳的质量塞进直径约二十四公里的一个核内。
中子星的表面温度约为一百十万度,辐射χ射线、γ射线和和可见光。中子星有极强的磁场,它使中子星沿着磁极方向发射束状无线电波(射电波)。中子星自转非常快,能达到每秒几百转。中子星的磁极与两极通常不吻合,所以如果中子星的磁极恰好朝向地球,那么随着自转,中子星发出的射电波束就会象一座旋转的灯塔那样一次次扫过地球,形成射电脉冲。人们又称这样的天体为“脉冲星”。
超新星爆发后,如果星核的质量超过了太阳质量的两至三倍,那它将继续坍缩,最后成为一个体积无限小而密度无穷大的奇点,从人们的视线中消失。围绕着这个奇点的是一个“无法返回”的区域,这个区域的边界称为“视野”或“事件地平”,区域的半径叫做“史瓦西半径”。任何进入这个区域的物质,包括光线,都无法摆脱这个奇点的巨大引力而逃逸,它们就像掉进了一个无底深渊,永远不可能返回。
天文学家称这种由于恒星死亡形成的天体为恒星级黑洞。一般认为,宇宙中的大多数黑洞是由恒星坍缩形成的。此外,在许多恒星系的中心也有一个因引力坍缩而形成的超大质量黑洞,比如在类星体星系的中心。在宇宙诞生初期可能曾经形成过很多微型黑洞(太初黑洞),这些黑洞的体积很小,质量相当于一座大山。
虽然黑洞本身不可见,但可以用至少两种方法检测出它的存在。当一个黑洞吸引尘埃、气体或恒星时,它的强大引力会把这些物质撕碎成原子微粒,原子微粒会从黑洞的边缘沿螺旋线坠向中心,速度会越来越快,直至达到每秒九百多公里。当物体被黑洞吞没时,会因为互相碰撞而使温度上升到几百万度,并发出χ射线和γ射线。在宇宙中,只有黑洞能使物体在密集的轨道上加速到如此高的速度;也只有黑洞才会以这种方式发射χ射线和γ射线。
任何物质或辐射到达黑洞边缘,越过它的视界就永远消失了。在黑洞的奇点附近,现有的任何物理定律都是不适用的。黑洞的奇点和我们现已认识的宇宙中的所有物质状态截然不同。到目前为止,还没有任何科学方法能用来测量黑洞。现在我们说找到了一个黑洞都是通过间接途径推算出来的。
星云和星团:
以前人们总是把星系和星云弄混。因为那时候没有威力足够大的望远镜将它们区分开来。人们还以为那些长得像旋涡的云雾状深空天体和猎户座里的大星云是同一类东西。尽管今天有时我们还管某些星系叫星云,但在本质上已不会把这两类有明显区别的天体弄错了。

发光星云和反射星云:
但要给星云下一个严格的定义却并不是那么容易。我们知道星系实际上是由大量恒星围绕着一个共同的中心构成的一种大型宇宙天体系统,而星云则主要是由飘浮在星际空间的尘埃和气体组成的。各种星云从几光年到几千光年大小不同,姿态各异。但我们的银河系虽属中等规模的星系,其银盘直径仍有十二万光年,与之相比星云显然小多了。

著名的马头星云。星云局部不透光,在明亮的背景下显得较黑暗。

马头星云的局部。它由寒冷、黑暗的尘埃和气体组成。在其顶端有一颗仍包裹在云团中的新星(HST)。

十七万光年外位于大麦哲伦云中的星云N159是一个恒星育婴场。初生恒星的强大星风正在重塑星云的形状(HST)。

“老鹰星云”(M16)里的巨大分子云柱,云柱中孕育着许多初生的恒星。位于七千光年外的天蛇座(HST)。

两万五千光年外的“手枪星云”位于人马座,正中的巨大恒星是迄今观测到的银河系中最明亮的恒星(HST)

猎户座大星云M42位于约一千六百光年外,是天空中最明亮的大星云。


天文常识1001条
第一章 天文学、天文学家和专业工具
1 天文学是…研究宇宙中一切物体(除了地球)的自然科学的一个分支。但是,天文学家确实也研究太阳和地球高层大气的作用,包括极光等。
2 大部分天文学家其实是天体物理学家。直到19世纪后期,天文学是很难描述和计算的。天文学家通过望远镜给天体照相并计算一些像日月蚀,行星的位置,恒星的位置和距离。尽管如此,天文学家是缺少对恒星物理性质和主宰它们为什么发光、怎样演化的物理机理的真正了解的。从那以后,我们在原子结构和物质作用知识上的突破使得天文学家通过物理规律的大方面应用而发现了宇宙的内在工作机制。这样,今天的大部分天文学家实际是天体物理学家并在做天体物理。这一头衔可以在鸡尾酒会上给人留下深刻印象。
3 天文学家大体上可以分为观测天文学家和理论天文学家。虽然一些人两方面都做,大部-分人更适合其中之一。尽管观测天文学家不必要整天埋头观测,他们要进行望远镜和仪器(如相机,光度计,光谱仪等)的研究设计来获得和分析宇宙天体的数据。另一方面,理论天文学家典型的是应用超级计算机建立模拟宇宙现象的模型。
4 观测天文学家和理论天文学家的工作经常是互相补充的。有时,观测天文学家会发现宇宙中无法解释的现象而理论天文学家会试着用数学和已知物理规律来解释观察到的东西。还有时,理论天文学家会发展一种理论预示了宇宙中某种现象或某种物理条件存在而观测天文学家会试着通过观察验证这种理论对不对。第一个例子是脉冲星的发现和后来的中子星理论。第二个例子是黑洞存在的理论假设和接着黑洞被真正发现。
5 总体来讲,研究宇宙是一件令人气馁的被动的活动。物理学家、化学家、生物学家有一个共同点:他们可以钻进实验室或到达目的地有效的创造出他们要研究的现象。他们可以接触到它,操作它,直接的和它们联系。问一个物理学家一个物质有多重,他们可以放在秤上称并马上读出来。问一个化学家一个反应放出多少热,他可以用温度计测出来。问一个生物学家一个血样有什么遗传特征,他可以立刻进行一系列小心的检测。对于天文学家来说整个宇宙就是一个实验室。但是,宇宙,用定义说就是“延展在那儿”的远在我们直接接触范围之外的所在。天文学家虽然可以测出一颗恒星离我们的距离,但是他不能用一盒卷尺去测量来验证这个距离。天文学家想知道太阳表面的温度,但是他不能去太阳那儿插一个温度计。天文学家想知道一个遥远星系的组成,但是他不能去那儿采样再运回地球分析。然而我们确实知道恒星的距离,太阳的温度,遥远星系的组成。这就是天文学为什么是一个如此令人着迷的领域,是一件对人类思想创造性灵活性有如此贡献的礼品。
6 天文学家通过收集分析宇宙天体的光和其它波段辐射研究宇宙。天文学家不能去宇宙中大部分的行星,恒星,和星系。取而代之,他们通过天体发送给我们的信息研究宇宙。能够携带信息给我们的就是光和其他波段辐射。这样天文学家主要通过天体辐射,研究宇宙天体(由物质构成)。很快我们就会谈到辐射。你也会在本章末找到关于物质的部分。
7 光学望远镜是一件通过聚光使我们可以看到比我们只用肉眼看到的更弱物体的设备。望远镜的原理本质上是相同的。进入望远镜的光被一系列的透镜、面镜不断聚焦成更细的光柱。因为光和辐射是天文学家研究宇宙的手段,所以越多的辐射被收集,能了解的信息就越多。
8 有两种基本的光学望远镜类型。大部分不是折射望远镜就是反射望远镜。
9 折射望远镜用透镜系统聚光。小的时候大部分人有这样的经验,在晴天我们用放大镜点燃一片树叶或纸。这个实验的原理就是放大镜把表面的光聚焦成一点,使这一点的温度特别高,即光度特别大。一架折射望远镜用透镜组完成同样的事情。在折射望远镜大的一端有两片大小相等但不同类型的镜片。当光通过它们,它们共同工作把光聚焦在望远镜筒另一端。在这一点,不管望远镜指向哪里都会成像。
10 反射望远镜用一面或多面反射镜完成相同的事情。在一架简单的反射望远镜中,遥远光束落在反射镜上。这面反射镜不是平的,它是凹面的。结果就会产生聚焦的效果。一种具体的形状是抛物面,可以使平行光轴的入射光聚焦在同一点。像折射望远镜一样,遥远物体在这一点成像。
11 一种简单的普通的被广大天文爱好者喜爱的反射望远镜是牛顿发明的。这一款今天被称为牛顿式反射望远镜的设计,在镜筒一端用凹抛物面集光聚焦。为了观测者方便,在镜筒里面另一端放置一块平面镜把光反射到镜筒侧面安装目镜的地方。许多天文爱好者都有这种设计的望远镜。
12 口径几到几十厘米的折射望远镜比反射望远镜昂贵。比如,平均15厘米的反射望远镜要几百美元,而15厘米的折射望远镜要几千美元。原因是这种大小下,磨制天文观测使用的反射镜比磨制透镜系统便宜。
13 对于需要便携性的爱好者来说,折射望远镜和牛顿反射式都是笨重的。一个典型的10英寸的牛顿反射式大约6到7英尺长100多磅重,而一个6英寸的折射望远镜就有这样大。很清楚,除非你有固定的场所安装这些设备,否则你要面临运输的困难。
14 另一种被称为施米特—卡塞格林的望远镜设计提供了一个有趣的优点。它是用反射镜和透镜的结合。口径几到几十厘米大小的施米特—卡塞格林式远比牛顿式昂贵但比纯折射的便宜,并且有着当牛顿式性能相近镜筒只有其三分之一长的优点。这样,施米特—卡塞格林式更便携且可以放在一个小的因而便宜的地方。因为它短,在有风的时候晃动的就很少。这是很重要的,因为望远镜的放大作用,即使很小的微风引起的震动在望远镜的像上也会产生很大的晃动。
15 我们看到最暗物体的下限取决于有多少光进入我们的眼睛而被聚焦。我们能看到东西因为光通过瞳孔被眼内的透镜系统聚焦在视网膜上成像,信号再被送到大脑。越多的光进入眼睛,越多的光落到视网膜上,越强的信号被送到大脑,就感到物体越亮。当我们刚进入一个黑屋子或刚从明亮的环境走到户外,我们感觉到什么都看不见。但当眼睛“适应”后,就可以看的更清楚了。适应是指瞳孔逐渐变大允许更多的光通过。尽管如此,还是有一个极限,能看多暗取决于瞳孔最大能变多大。
16 望远镜能让我们看到更暗物体是因为它们让更多的光进入我们的眼睛。即使在最暗的条件下,平均来说,认得瞳孔不能扩张大于8毫米。所以我们只能看到最暗和通过8毫米见方的光通量呈正比亮度。但是望远镜可以使我们欺骗大自然而把更多的光聚焦成适合瞳孔大小的光柱。用你的裸眼去看星空,你只能用瞳孔的8毫米见方集光。用望远镜看星空相当于用250毫米见方的透镜或面镜集光,这样相当于有了直径250毫米的瞳孔。这就怪不得望远镜能让我们看到宇宙中远比用裸眼看的暗的多的东西。理解这一基本原理你就明白能给我们揭示迄今为止都为尽知的宇宙的望远镜的神奇魔力了。我们将要看到,专业天文学家并不用眼睛而是用远比眼睛客观的仪器接受信号。但是位置是一样的。
17 天文学家倾向用主镜的口径称呼一架望远镜。天文学家倾向用“36英寸”或“2.4米”称呼一架望远镜。这样做的时候,他们使用英尺或米作单位指出望远镜主镜的直径。主镜通常被称为物镜。
18望远镜能够给我们看更远更暗天体的能力取决于主镜的面积。虽然天文学家用目镜的直径称呼望远镜,但望远镜聚光的能力正比于目镜的面积而不是起直径。根据圆面积公式,10英尺的望远镜实际上比5英尺的望远镜多聚4倍的光。望远镜聚集光的能力有时被称为聚光能力。但是这和望远镜的放大率没有任何关系。
19 为了放大望远镜中的像,你需要一个目镜。天文爱好者买的望远镜大多带有一组分类的目镜。每一个目镜典型的是一个小的包含透镜系统的圆柱。不同的目镜得到不同的放大率。
20 为了计算出一个特定目镜下一架特定望远镜的放大率,你必须理解焦距。每一个望远镜物镜和目镜有一个所谓的焦距。它其实是一个距离,通常用毫米衡量。(1英寸等于25.4毫米)如果你曾经用放大镜烧过树叶,放大镜镜片和燃烧物之间的距离就是焦距。换句话说,它就是透镜和来自遥远的光(此处是太阳)会聚的点。目镜的焦距通常写在目镜筒的侧面或末端,物镜的焦距经常包含在望远镜的文献里。
21 计算放大率,你要做的只是一个除法。当你在望远镜上插入一个特定的目镜需要计算它的放大率时,你要做的只是用物镜的焦距除以目镜的焦距。例如,一架望远镜物镜焦距是2540毫米,你插入了一个焦距25.4毫米的目镜,它的放大率是100。这样,意味着当你通过这架观测时,你会看到比你用裸眼近100倍或大100倍的物体。
22 理论上,用任一架望远镜可以得到任一放大率。为了得到更大的放大率你要做的只是选用越来越短焦距的目镜。这样,如果25.4毫米焦距的目镜得到100倍放大率,那么一半焦距的目镜,即12.7毫米,再同一望远镜上可以得到200倍的放大率。6.35毫米焦距的目镜可以得到400倍的放大率。理论上你可以一直这样做下去直到百万倍的放大率或者更多。但是这里面有一个问题,那就是……
23 望远镜的有用放大率。必须要记住的是目镜放大的是通过物镜的经聚焦形成的像。所有的目镜要利用这个像来放大因此就有一个限制,即在多少光的总量下能有效的工作。简而言之,目镜接受越多的光,它就可以把像放的越大并仍能在你眼睛的视网膜上产生足够明亮和清晰的像。换而言之,对于特定的望远镜,你把像放到多大仍然可以看到足够清晰明亮的像有一个实际的限制。超出这个限制就会得到不好的结果。随着越来越大的放大率,你确实得到越来越大的像,但它会变的更暗,更模糊。实际上你很难看到细节。所以远比“这架望远镜放大率是多少?”重要的问题是“这架望远镜的最大有用放大率是多少?”
24 一架特定望远镜的有用放大率的值取决于主镜的尺寸大小。虽然一架望远镜有用放大率会取决于很多因素,包括望远镜的光学质量,某个晚上地球大气的稳定程度。为了得到大约的最大有用放大率,你应该找到一架望远镜,以英寸为单位测出其直径再乘以40。因此,30英尺的望远镜在大多数晚上可用的最大放大率大约3*40=120(也写成120X),6英寸的在同一晚上在放大率是6*40=240时可以看到相同清晰明亮的像。因此,尽可能买佩有最大物镜的望远镜是值得的。
25 有时选用较低放大率比选用最大放大率明智。低放大率目镜会得到较小的像,但是像更尖锐更明亮。大多数情况,这会更适于眼睛。并且,对于某些比较大的天体,比如星团,彗星,月亮,宽视场低放大率的目镜能得到更好的图像。
26 双筒望远镜对于简单享受天空的乐趣来说可以算是非常令人满意的工具了。为了坚持“物超所值”的信条,双筒望远镜是我们能满足从望远镜里看天空的可以负担的起的一个选择。尽管双筒不能提供给你一般望远镜可以提供的月球和行星的细节,但是你只是躺下来随便扫过星空,它们已经是非常美妙的了。另外装备了双筒以后,你可以享受很多美妙的时刻,比如顺着银河巡航来找你可以在本书看到的星云和星团,也可以观察双星,月蚀和不期而遇的彗星。
27 双筒上的数字告诉你它的大小和放大率。双筒经常是用两个数字和一个×来描述的,如7×35或10×50。两个数字中的第一个数字表示双筒的放大率,第二个数字用毫米表示双筒主镜的口径。因为25毫米约等于一英寸,一只10×50 的双筒有一个50毫米或两英寸的物镜和10倍的放大率。
28 晚上用一只7×50的双筒是一个很好的选择。很多人感觉7×50的双筒可以比7×35的双筒(经常用在白天观看体育赛事上)提供更强的聚光能力,但是并不比更大放大率的双筒笨重麻烦。可以给我们提供银河壮观景象的更高放大率更大口径的双筒最好是用三角架支撑它们的重量使其稳固。
29 更高质量的折射望远镜和双筒使用镀膜的镜片。这些化学涂层使镜片看起来发蓝,它们减少内部的反射从而使仪器产生完美像质。
30 天文业余爱好者通常可以告诉你他们正在使用的望远镜的放大率,而专业天文学家不是这样思考问题。放大率是专业天文学家一般不在意的问题。那是因为专业天文学家通常从望远镜上拿下目镜,用望远镜上其他光学器件把光聚焦到CCD 上,就像被用作一架照相机或光度计的一部分或一台光谱仪。这样的话,专业天文学家感兴趣的是像的大小,能够看到的细节程度,和能够到达CCD的光波长或颜色。
31 专业天文学家更感兴趣的是望远镜的分辨率而不是放大率。分辨率指的是一架望远镜理论上让你看到细节的优良程度。细节的优良程度可以这样说,你能看到多小的物体,或者说两个物体靠的多近时仍然可以被分辨。望远镜的分辨率是以角秒来衡量的。
32 一架望远镜的理论分辨率很容易计算。一架以角秒衡量的光学望远镜的理论分辨率可以很容易的以13除以这架望远镜的以厘米衡量的主镜的口径来计算。(2.54厘米等于一英寸)这样一架100英寸(254厘米)的望远镜理论分辨率约为0.05角秒。一架200英寸望远镜理论分辨率约为0.025角秒(只有满月直径的1/36000)。换句话说,第二架望远镜可以分辨只有0.025角秒的天空中的两颗星。而100英寸的望远镜只能把它们看成一颗星。尖锐的像是高质量的像,因此天文学家希望得到最好的分辨率。这是另一个天文学家垂涎尽可能大的望远镜口径的原因。
33 你好,某某?请给我一张星图。就像有德克萨斯和阿富汗的地图,也有天空的地图。它们曾经是用手画的,但是现在天文学家主要依靠的是照片或计算机图像。其中一个范围最广的这类照片和图像由加利福尼亚进行的帕洛马天文台巡天和智利欧洲南方天文台进行的南半球巡天联合组成。几百幅图像显示了整个天空暗至20等的恒星。另一个范围广的星图是为哈勃空间望远镜编得导星目录表。它包括了暗至15等的超过一千五百万颗的恒星,只能从大容量的CD-ROM里得到。在观测以前,天文学家可能会扫一眼它需要的目标周围的较显眼的恒星,这样就可以作为他它需要的目标的路标。
34 天文学家用一套类似于地理经纬度的方法定位天空中的物体。就像地球上的物体可以用经度和纬度指明一样,天空中的任何一个物体可以用一套类似的坐标系统指明,在这个系统中赤纬代替了纬度,赤经代替了经度。
35 赤纬以度数衡量。在天球坐标中和地球赤道平行的大圆叫做天赤道。就像纬度一样,如果一个物体位于天赤道以北,就说他有正的赤纬。类似的,在天空中天赤道以南找到的物体有负的赤纬。到北或南的距离用度数角分角秒衡量(和纬度一样)。
36 赤经用时间的单位衡量。赤经坐标在天空中向东衡量。像经度也应该有一个零点。就像零度子午线穿过英国格林威治,天空中的零度子午线是穿过春分点的子午线,一个天体的赤经是地球从这条零度子午线在正南方时起自转到所求天体在正南方时止的时间长度。这样,天体的赤经就以小时、分钟和时间上的秒来衡量。
37 星图一般包括所含宇宙天体的坐标。就像地图一般在边上标出经纬度一样,星图一般在其所描绘的区域标出赤经赤纬。天体的表和目录一般也列出每一个天体的坐标。赤经(right ascension)一般缩写为R.A.;赤纬(declination)一般缩写为Dec.。这样,例如冬季星空中最灿烂的天狼星可以在天空中R.A.6h14m,Dec.-16°35'找到。而夏季星空中最亮的织女星位于R.A.18h34m,Dec.+38°41'。这些坐标就像经纬度能够定为洛杉矶或海上的一条船一样方便精确的定位出天上星星的位置。
38 相对于恒星运动的天体天球坐标不断改变。因为太阳月亮和行星相对于恒星不断运动,它们的赤经赤纬也在不断改变。这样,列出他们的位置的表每晚都需要改变。对于哪些是运动特别大的天体,比如月亮,有时需要列出起每小时的坐标。
39 天文学家为什么需要这样一个坐标系统?他们不能只是把望远镜指向他们想看的地方,就像你使用你的双筒?有很多这个系统必须的原因。首先,很多专业望远镜有上吨重,很难以转动。第二,望远镜通常放在只允许看到一条天空的天文台里,天文学家通常看不到全天情况。第三,天文学家选用的目标星通常太暗了,肉眼没法看到。第四,如果在德国的一个天文学家想告诉在智利的同伙把望远镜只向他们感兴趣的一颗星,他不能只是说,把望远镜指向那儿。这没有任何意义。
40 许多望远镜都是计算机辅助跟踪,指向天文学家想要研究的天体的正确的赤经赤纬。许多专业望远镜甚至一些爱好者的镜子都是计算机控制,自动移动指向正确的天球坐标的。近些年来,一些爱好者装备的计算机甚至事先装载了包括行星以及亮的恒星和其它一些好看的星团星云星系的坐标的软件。只要输入你想要看得天体名称,按一个按钮,望远镜会为你找到它。
41 天文学家不喜欢闪烁的星星。漫天闪烁的星星是一个很浪漫的景象。但讽刺的是,它是天文学家害怕的事情。那是因为当恒星闪烁时表明地球大气状况很糟。只有当地球大气干净稳定时望远镜才能产生天体非常清晰的像。但是有时地球大气极不稳定,表明大气中有无数不断移动的湍流。这时透过大气观察天体就像透过一条干净的急速流动的小溪看底下的东西。小溪底下的物体像是不断的波动,被水的湍流扭曲。同样的,大气湍流也把穿过它的光线折射扭曲了。对于裸眼,这些不稳定的大气是星星不多闪烁。望远镜使问题更复杂了,因为在放大天体像的过程中,它也放大了大气的扰动,是星星的像弥散成一个不断变换大小和形状的光斑。天文学家把大气不稳定的夜晚称为大气的视宁度不好。这样,一架望远镜在某一夜晚的分辨率比起其本身的尺寸跟依赖于大气状况。
42 天文学家通常试图把天文台建造在有更长时间大气视宁度的地方。选择天文台新台址的最大考虑是一个地方大气稳定性或说好的视宁度的持续性。这样的地方通常选在盛行风从比较平坦的地形或海洋上吹来的较高的山峰上。如此平坦的地形产生的空气流动可以保持光滑平行,从而只有尽可能小的垂直运动。这样,比如Kitt峰国家天文台位于较平坦的亚利桑那沙漠上几公里高的山峰上。世界上最好的一些天文台位于像夏威夷的一座名叫莫那克亚的死火山和智利安第斯山脉一系列的山峰上,这些都在于这些地方的向风面是一望无际的海洋。然而尽管在如此理想的地方,一些大望远镜的分辨率很少超过1角秒。
43 为了找到建造天文台的地方,天文学家也在寻找最晴朗的地方。可以理解,天文学家不仅希望找到大气稳定的地方,它们也希望找到最晴朗的地方。这当然意味着每年有尽可能多的无云日。夏威夷的一些地方覆盖着热带雨林,但是在13000英尺以上,莫那克亚的最高峰如此之高,除了偶尔的大雪,它已超出了“气象带”。智利的那些天文台在干燥的沙漠之上,一年也可能见不到一滴雨。
44 另一个选择台址的重要因素是远离污染。这看起来也很明显,但当说到污染,光学天文学家关心的不仅仅是空气中没有那些化合物。他们关心的是另一种形式的其他他人没有想过的污染,光污染。城市里发出的灯光和车灯光射向天空洗去了暗星河银河的光,使得一些天文研究除了在郊区实际上无法进行。向曾经是20世纪天文研究重地的威尔逊山和帕洛马山,已经因为来自洛杉矶和圣地亚哥等大城市的光污染逐渐变得不能用了。甚至Kitt峰也日益受到图森不断膨胀的人口的威胁。天文学家已经搬向更远的像在夏威夷和智利的山峰。
45 大众可以帮助减少光污染。不需要减少晚上街道和高速公路需要的安全照明量,政府和大众可以采取一些简单的不需增加负担的措施而显著的减少它们产生的光污染。仅仅在路灯上加上灯罩和使用不同的光给高速公路照明可以使我们重新拥有不仅是对天文观测至关重要的也是不断减少的自然资源的美丽星空。想要学习大众应该怎样做,请联系:
Dr.David Crawford
Dark Sky Association
3545 Stewart Street
Tucson,Arizona 857161
46 当我们谈到宇宙研究时,我们需要注意更多我们的眼睛可以注意的东西。有时天空看起来非常的晴朗但对于某些天文研究却不能接受。对观测光学这一精确测定天体视亮度的天文分支尤其正确。例如,实际上对裸眼来说不可见的一块非常薄的云,在这样的仪器里产生非常大的波动致使数据报废。
47 能造多大的望远镜有着技术上的限制。望远镜的主镜越大,它成的像越亮越尖锐。那么为什么不简单的用一块巨大的镜子呢?问题就在于造这个镜子的物质有一个承受力的极限。为了使望远镜的透镜或凹面镜能精确的把光聚成一个清晰的像,透镜或凹面镜的镜面必须有精确到几百万分之一英寸的只有光波长的几分之一的镜面形状。现代磨制镜面的工艺可以达到这样的精度,但是镜面重到一定程度以后会在自身的重力下变形。变形量不能达到眼睛看到的程度但是足够把光扭曲到不能精确成像。
48 世界上最大的折射望远镜在威斯康星,最大的反射望远镜在俄罗斯。(截止到2006年,最大的反射望远镜是欧洲北方天文台的GTC望远镜,口径11.5米——空间天文网注)世界上最大折射望远镜主镜口径有1米。它位于威斯康星州芝加哥大学管理的叶克斯天文台。1948年,加利福尼亚帕洛马山上直径5米的反射望远镜落成。几十年内它始终是世界上最大的。直到20世纪70年代,高加索山脉的一座6米的反射望远镜才落成,但是不幸的是它的光学系统始终不是太好。
49 新材料和新技术导致了更大望远镜的出现。20世纪80年代一项令人激动人心的望远镜设计技术的进步是天文学家否认了原来认为的光学望远镜尺寸有限制的想法。这一理念包括把几个单独的镜片合成一个望远镜并使它们单独接收到的光产生一个联合的像。这样的方法使单独镜片的总面积等效于整个它们联合起来的面积。夏威夷莫那克亚山上的凯克望远镜用36块直径1.8米的镜片拼在一起。1990年首次进行测试,1996年放在它旁边的双子镜(凯克2)开始加入。更大的多镜面望远镜设计正在进行中。
50 其它的望远镜设计用激光和计算机征服自然。在一个被称为自适应光学的研究领域,科学家正在调查利用激光不断探测望远镜上空的大气并且把信号传给计算机控制的支持主镜的马达使其精确的改变主镜的形状来抵消大气湍动的变化。如果成功的话,这种望远镜可以达到前所未有的清晰度。
51 另一种望远镜设计技术把几个望远镜的光合成以达到很高的清晰度。在最近的英国剑桥大学的一项实验中,天文学家把来自三面指向同一目标的不同望远镜的光合成产生一幅图像。主要原理是干涉测量法,因为图像是通过计算机分析来自不同望远镜的光的干涉得到的。通过这样的分析计算机能得到大量关于目标物体的信息并且最终产生和使用整个一块面积等同于单独望远镜之间相隔的距离一样的像。在最初的实验中,三架望远镜大约20英尺远,这样就模拟合成了一架有20英尺口径的望远镜。结果是成了一幅等同于让你在600英里以外看到一个许可证书的清晰度的五车二恒星系统的星像图。不久望远镜可以被放得更远来产生更高的分辨率。使用不同的分光仪,美国的一个小组最近得到一个好10倍的结果,分辨了一对只有0.0032角秒的双星——相当于一辆在月球上的汽车看上去的尺寸。
52 其它地方也计划着相似的望远镜阵。从智利澳大利亚到美国都在计划或正在建造其它的光学干涉仪。另外,凯克和凯克II能够也正在准备这样连接起来。随着计算机变得更快,能够处理越来越多的数据,这样的系统在我们进入21世纪无疑会在天文领域扮演一个重要的角色。尽管如此,这样的系统也有它的缺点,就像生活中一样,科学中也没有免费的午餐。第一,这样的系统需要大量的计算机功率。第二,图像的最终完成需要望远镜几天或几个小时的时间。
53 天文学家实际上很少花时间通过他们的望远镜观测。这听起来很奇怪,但却是事实。大型望远镜是一个很昂贵的日用品而眼睛是一部不灵敏不客观的设备。现代天文学家改为坐在天文台里花大量的时间看电脑屏幕。其中典型的是显示天文学家正在研究的行星、恒星、星系或其它物体。但是图像也会经常的是附近的一个不相关的物体。并且图像甚至不是来自主镜而是连在主镜上的小望远镜。利用这个小望远镜和屏幕上对应的像,天文学家使主镜跟踪天空中的物体。在其它的监视器上,它保存从比人眼更可靠的科学仪器上记录下的数据并且分析主镜收集的他正在研究的天体的辐射。
54 有些情况,天文学家甚至不需要去天文台。现代成熟的远程控制技术已经达到了可以让天文学家在晚间天文台只有一个助手帮助打开关闭设备和纠正设备可能产生的错误下,通过从他家或办公室连出的计算机指导望远镜的工作。
55 有些情况下天文学家根本不可能去天文台。当然,天文学家利用哈勃空间望远镜和其它绕转的空间器作为天文台必须完全依靠来自地面的远程控制。(只有航天员偶尔拜访哈勃空间望远镜做做修理或安装新设备,天文学家是不让接近的。)在这种情况下,经过特殊训练的工程师和技师把天文学家想用哪台特殊设备观测那个特殊天体的要求翻译成计算机指令,通过电磁波传送到航天器上。天文学家当时可以在他们正在做观测的台站(只要他们答应不碰任何东西)或者就呆在家里通过邮件或计算机连接收到数据来做后面的分析。
56 在天文学家的工具箱里有特定的基本工具,其中最常见的是照相机。照相术最早被引进天文领域是19世纪中叶。这个进步是令人振奋的,因为,第一次,天文学家可以客观地记录下他们的望远镜指向的物体而不要用他们的手画,这样一个天文学家可能和另一个记录下的显著不同。多年来,对胶片在天文领域应用的主要限制是它对光相对不敏感,别是天文上特别暗的天体。随着时间的推移,胶片提高了灵敏度,并且天文学家从在使用前在炉子上烤干胶片到冷却它发展了一系列技术改进它。虽然一些天文图像是彩色的,但是为了天文研究的目的拍摄的照片大多是黑白的。
57 近年来,一种胶片的电子替代品席卷了天文界。它就是CCD或者说电荷耦合器件。你可以在你家的可携式摄像机中找到。这样的设备是由几万到几十万个很小的被称为像素的在曝光时产生电荷的光敏元组成。通过读出每一个像素中的电荷计算机可以重现原来照射到CCD上的光的分布从而成图在监视器上显示或打印出来。CCD比照相胶片的优点是对光更敏感,胶片只能用一次,CCD可以一次又一次重复使用。另外的,CCD图像存储在计算机里,可以向其它数字图像一样改变对比,找出细节,从而可以电子化的处理。CCD和其它的一些技术进步是今天的天文学家在同一时间内比他们几十年前的前辈多得到几百倍的数据。
58 CCD通常被用来在航天器上成像。如果在天文台进行传统的照相,它可以简单的在一间方便的暗室中进行。但当到了航天器上,拍摄和换胶片就不是那么简单了。所以现代的航天器用CCD和类似的照相机进行电子化的成像。图像存储在航天器上的计算机里或者以数字的形式存储在磁带里,然后以电磁波的形式传回地球,在地面上用计算机重新成图。
59 另一件天文领域通用的工具是光度计。光度计是用来精确测量物体有多亮的电子器件。物体可以是行星恒星星系或其它任何天体。天文学家用的光度计实质上等同于你可以在35mm照相机中找到得非常非常灵敏的光度计。光度计的核心是一块在光落到上面时可以发
射电子流的物质。光越亮,电子流越强。流的大小被记录在计算机里。通常,每次一系列的虑光片被一次放在光源和光度计之间。这样行星恒星星系或其它任何天体在不同颜色的相对亮度就可以测量了。有时在光柱中放一个偏振片然后旋转来看来自目标物体的光本身是不是偏振的。
60 可能现代天文学家使用的最万能的工具是光谱仪。光谱仪是利用棱镜或磨光表面的刻上很多精细的平行条纹的衍射光栅把来自天体的光分裂成彩色的光谱。这个光谱被记录在一张胶片上,或者如果使用了CCD,光谱的数据被收集存储在计算机里以备显示或分析。从光谱里可以决定一个物体很多难以置信的性质,比如它的温度、化学组成、尺寸、自转速率、接近或远离我们的速率、磁场的强度和表现等等。再一次,在所有情况下,天文学家收集和研究光和其它形式的辐射。
61 光谱有三种基本形式。就是通常所说的连续谱、吸收谱和发射谱。
62 热固体或者高压下的热气体产生连续谱。连续谱就是颜色连续扩展开,例如从红到紫。一个热的铁拨火棍,电灯泡里白炽的灯丝,或恒星的内部都产生连续谱。
63 很多恒星有吸收谱或黑线谱。吸收谱或黑线谱就像它的名字显示的,是有黑线穿过的连续谱。当一个恒星产生连续谱后,在辐射穿过空间传送到我们地球这儿以前必须穿过恒星大气。恒星大气中的冷的气体可以吸收连续谱中特定波长的辐射并且在所有的方向折射反射这些不连续的颜色。这样,这些特定波长的光就很少向我们这个方向传播,这些波长就在恒星的光谱中显示成暗线。随后要讨论的,恒星中的每种元素吸收特定的波长,所以谱线的鉴定可以告诉我们特定恒星大气中的元素和其他很多东西。
64 行星也展示出吸收谱线。行星本身不发射光,但是仅仅把太阳光反射到宇宙空间。结果就是,行星的光谱实际就是太阳的光谱只不过由于光线穿进穿出行星大气而产生了额外的对应黑线。
65 非常低的压力下的气体通常产生发射谱或亮线谱。在宇宙空间中这种状态通常存在于恒星的热的稀薄的大气中(像太阳大气中叫做色球层的区域)和恒星吹出的叫做行星星云的气体层。就像名字暗示的,发射谱由叠加在连续的或暗的背景上的一系列亮线组成。
66 什么是光?这很有讽刺性。光就在我们周围,因为它我们才能看到东西。但是要精确的说它是什么却不容易。光可以被认为是有时具有波的性质的在时空中传播的粒子。这是因为光具有双重的性质。如果你想把它描述成波,想象一下大海中一排排的波浪。当然光波不是水组成的而是电能和磁能在空间的共同传播。我们叫做电磁波或电磁辐射。真空中光波的速度是30万千米每秒。从一个波峰到下一个波峰的距离叫波长,一秒钟内通过一个固定点的波峰叫做波的频率。
67光波有非常短的波长。鉴于你习惯于在大海或湖泊中看到的波长有几分米到几米的长短,光波波长大约从300纳米到700纳米。
68 这种不同就是我们称作的颜色。当650纳米的光照射到你的眼睛时,你看到红色。不是因为你生气了,而是这个波长的电磁波刺激了具有正常颜色分辨能力的人的眼睛的视网膜才让你看到了红色。如果400纳米左右的电磁波射到你的眼睛你会看到紫色。波长在上述中间
的电磁波刺激我们的眼睛可以让我们看到其他的从红到橙然后到黄、绿和蓝再到紫。不同的颜色只是由于不同的波长而没有什么其它的。这一我们人眼敏感的颜色或波长分布就被称作可见光谱。
69 在可见光谱以外还有很多很多。只是因为我们的眼睛看不到比紫色光波波长更短的波长并不意味着自然不产生它们。实际上存在。这就是那些可以使我们产生灼伤和使某些物质发荧光的高能射线。因为这些射线有着紫外以外的波长我们叫它紫外射线。在更短的波长我们发现辐射有着更高的能量可以穿过人的身体。我们叫它们X射线。在更短波长更高能量我们发现γ射线。在另一方向,在红光以外我们发现辐射刺激皮肤是我们感觉到热却看不到它。我们叫它红外。在更长的波长上,我们碰到能使你的晚餐迅速做好的微波。再长的波长(现在就在厘米和米的量级了),我们有世界上用来传播音乐、新闻和信息的波——电磁波。
70 所有这些不同形式的电磁辐射有着不同的名称是因为我们在不同的时间发现它们的。最重要的一点实际上它们都是相同的。它们都是电磁波。它们只是波长不同。加起来,这一整个的从射电波到γ射线的跨度组成了电磁波谱。
71 人眼只是对整个电磁波谱中的一小部分敏感。可见光只组成了整个电磁波谱的一小部分。因为这个原因我们实际上只看到了我们身边东西的一小部分。想想做一个类比,只能听到钢琴上的一个键或者管弦乐队演奏的中音C两边的很少一部分。这就指出了我们只用眼睛或光学望远镜看到的整个宇宙的部分的多少。
72 宇宙中的物体发射出比我们的眼睛看到的宽的多的辐射谱。我们的太阳在光学波段发出比其它波段多的多的辐射(这正是我们眼睛敏感的波长范围,这恐怕不是一个巧合),但是太阳实际上辐射所有的波谱。太阳实质发出射电波,红外和紫外波,也发射X射线和γ射线。实际上所有的其他恒星和星系都一样。使用适当的仪器,连续谱、吸收谱和发射谱或者天体在其它波段的直接的像可以得到并且研究。
73 天体在不同的波段看时经常显得奇异。如果我们的眼睛可以像可见光一样看到其它波段的光的话,使用适当的仪器,天文学家可以使天体形成我们眼睛看到的一样的像。(可以把红外辐射转换成可见光而使我们看到黑暗中的物体的夜视镜和医院中拍的X射线片是简单的非天文应用的例子。可见光谱以外的天文图像可能是惊人的。例如在X射线波段,太阳明亮的盘几乎是黑的,但是在可见光波段几乎是黑的磁暴在X射线波段有着极其明亮的并且每天甚至每小时都在爆发性变化的光晕。另外,我们眼睛看来非常平静没有变化的夜空,在X波段和γ波段看来是一个混乱充满暴力的地方。
74 天文学家能够收集和研究越多的天体波长,他们就越能了解这个天体。因为天体在不同的波段看来可能是根本的不同,那么我们能够收集和研究越多的辐射波段,我们就能越多的了解这个天体。确实,把不可见的波段变成可见是20世纪天文最大的发展和胜利。过去所叫的天文现在正确的叫法是可见光波段天文,在过去的半个世纪里我们看到了射电天文、微波天文、红外天文、自外天文、X射线天文和γ射线天文的兴起。相同的天体在不同的波段可以产生不同的图像,这些图像互相补充,以期为我们提供了天体和宇宙的更充分的理解。这些图像联合起来组成了比其单独部分有着更大效用的作用。
75 在地面上只能接受很少一部分电磁波。只有可见光、很少一部分的红外紫外光、和大部
分的射电波谱部分能够很容易得穿过地球大气。(有些射电部分甚至可以穿透云层,因此在阴天也可以到达地面。)因为这个原因,光学天文和射电天文大部分在地球表面上做。
76 一些来自空间的辐射只能穿过大气层的一部分。红外波段很难穿过水汽。因为低层大气有着大量的水汽,红外望远镜一般位于干燥的地区或山峰之上也会放在气球和在高空飞行的喷气飞机上。
77 有些辐射根本不能穿过大气。X和γ射线不能穿透大气(对我们来说是一件幸事),除了一些不幸的臭氧空洞,大部分的紫外波谱也不能穿过。这样,想做紫外、X射线和γ射线波段的天文学家除了把他们的仪器送上大气层以外别无选择,这些观测天文学分支的发展必须等到太空时代的黎明的到来。因为红外天文也受到大气的妨碍,红外天文卫星也越来越多地随着地球卫星飞行了。
78 不同波段使用的望远镜看起来非常的不同。用来做红外和紫外天文的望远镜看起来非常像光学天文中使用的反射望远镜。而射电望远镜外表看起来像卫星或雷达的碟形卫星天线。X射线望远镜不能用普通的镜子聚焦X射线因为X射线是如此之强而可以直接穿过镜子不被反射!取而代之,X 射线望远镜的里面看起来像一堆底被敲掉的抛光的金属碗,来到的X射线被抛光金属面散射而被聚焦。收集所有电磁辐射中能量最大的γ射线望远镜更像一个 盖革计数管。
79 一眼看过去,射电望远镜看来和光学望远镜很不相同,实际上不是的。射电望远镜看起来像卫星的蝶形天线,但是它们工作起来和光学反射望远镜十分相似。碗形的天线代替了光学望远镜的反射主镜,并且在天文学家放仪器的地方把遥远天体的射电波收集聚焦。因为这是射电天文,探测器不能是照相机或光度计取而代之的是一个非常灵敏的射电接受器。这种类推对于你的电视卫星天线也是有效的。都是接受射电波的设备。但是射电望远镜对于接受到的射电波比你私人的电子设备灵敏几百万倍。
80 类似于光学望远镜,射电望远镜越大,它可以收集越多的辐射。但是射电望远镜也因为另一个原因而需要更大。我们早先提到的,一架望远镜的分辨率决定于主镜的尺寸。尽管如此那次给的简单公式有点太简单了,因为它只工作与光学波段。实际上,望远镜的分辨率也取决于它所聚焦的波长。波长越长,同样尺寸的望远镜得到的像越模糊。因为射电波长比光学波长长了几千到几百万倍,为了得到相同的清晰度射电望远镜的接收天线应当比光学望远镜主镜大几千到几百万倍。因为这样的工程技术还达不到,射电望远镜只有几百英尺的接收天线。最大的单接收天线射电望远镜位于波多黎各一个山谷,有1000英尺的口径。这架望远镜仍然不能像大多数的光学望远镜在光学波段看得那样清楚。
81 就像光学望远镜,射电望远镜可以连在一起产生干涉。天文学家可以克服射电波长的自然缺陷,他们把两个或多个单个的射电望远镜连在一起,有效地把单个的望远镜综合成具有它们之间距离的口径的望远镜。一个例子就是VLA,或者说深大阵列。它是由27个每个80英尺口径的射电望远镜排列在新墨西哥州的一个Y形的铁轨上组成。天线之间最大的距离是26英里。结果就像我们拥有了一架由华盛顿环城路那么大的射电望远镜。VLA可以在射电波段以0.1角秒的分辨率看清物体的细节——比地面上任何一个单独的光学望远镜都好。
82 超越VLA。世界上不同地方的射电望远镜甚至把它们所有的信号都联合起来模拟一架有我们整个星球大的天线。这样一个阵被称为VLBI,或称为甚长基线干涉仪。这样的一个网络从太平洋中部的夏威夷延伸到加勒比海的St.Croix。单个的射电望远镜离的越远,计算机就需要越长的时间整合数据。
83 另一些望远镜探测一种叫做宇宙线的东西。就像它们的名字显示的,宇宙线不是电磁波。它们是很小的亚原子粒子(大多数是质子和氦核)以接近于光速的速度从空间流进我们的大气层。它们的起源仍然在争论之中,但是大多数看起来像是由于超新星的爆发或是含有致密的中子星的双星系统的相互作用产生的。然后粒子被星系的磁场加速,从任何可以想象的方向打向我们。当宇宙射线进入地球大气层的时候,它们可能和我们头顶的高层大气碰撞产生很弱的只能被非常灵敏的探测器检测到的光。宇宙射线也可以用气球载的或飞机载盖革计数器直接研究。
84 一些望远镜是埋在地底下的。更奇怪的是,有时它们需要装满液体。这些望远镜更正确的是被叫做探测器,它们由能装几万到几十万加仑的大罐子组成。被用来探测太阳、其他恒星和超新星爆发发出的中微子。当中微子穿过这个大罐子,它们只有很小的机会和其中一个原子碰撞比把它转化为另一种原子。定期的冲洗检查罐子里的东西,科学家可以确定有多少中微子穿过探测器。其它的中微子探测器装满了纯水。当中微子穿过并和水互相作用,产生很小的闪光而被放在水中的极其灵敏的测光计捕捉。这些罐子都埋在在很深的地下(在像南达科他州的一个废弃金矿和伊利湖的一个盐矿里)来屏蔽其它粒子向宇宙线的的影响,而只让中微子通过。
85 其他探测器在宇宙深处寻找引力波。根据爱因斯坦的广义相对论,运动状态快速变动的物体可能产生引力波,实际上是时空的扭曲。物体的质量和加速度越大,引力波的波幅越大。引力波传过地球上的物体时会在这些物体上产生微小的动量扭曲,如果物体和外界震动充分隔绝并且和足够灵敏的探测器相连,就可以记录下来。马里兰大学的约瑟夫·韦伯建造的早期的引力波探测器被证明不够灵敏。正在美国的不同地方建造的新的探测器应该能够探测到7000万光年以外的灾难性事件比如中子星碰撞释放出来的能量。
物质的性质
86 最基本的物质形式叫做原子。世界上有从水到特氟纶的数十亿种自然的和人造的物质,但是所有的这些都可以在化学实验室中分解成更简单的物质。例如利用电流水可以分解成两种气体,即氢气和氧气,或者其它的,普通的食盐(氯化钠)可以分解成金属钠,和一种有毒气体叫做氯气。这四种物质中的每一个——氢气、氧气、纳和氯气——有这独一无二的性质。没有哪一种能够进一步分解而不丢失它们的性质,还是氢气、氧气、纳和氯气。它们是最基本的物质因此被叫做元素。依然保持这种元素性质的最小单元叫做原子。尽管如此,原子被认为是由更小的叫做质子、中子和电子的粒子组成的。通常,质子和中子紧密结合在原子的中心,电子以一定距离绕核旋转。实际上又一个整个的亚原子粒子家族,除了极少例外,本书不会接触它们。
87 当原子组合在一起,它们组成了分子。两个或更多原子结合在一起,形成了分子。例如,一个碳原子和一个氧原子组成一个一氧化碳分子。一个碳原子和两个氧原子组成一个二氧化碳分子。分子只含有很少几个原子的通常叫做简单分子,含有很多原子的分子叫做复杂分子。究竟几个原子从简单变为复杂决定于你谈话的对象。当射电天文学家在星际空间找到6到8个原子的分子时,他们把它叫做复杂分子,因为没有人会想到在险恶的宇宙空间可以找到这种东西。但是生化学家可能会把这种分子称为很简单的分子。
88 在整个宇宙,只有92种自然产生的元素。唯一的决定这种特定的元素是这种元素而不是其它的元素的是在原子核里的质子数量。例如,在宇宙中每个原子核里有一个质子的原子是氢,每个核里有两个质子的原子是氦而不会是其他。碳原子有6个质子,氧原子有8个质子等等。一直到核里有92个质子的铀。原子核里有相同质子和电子数的元素具有相似的化学性质,为了简便,科学家们按照质子数目把元素进行了分组,这就是元素周期表。世界上每个化学实验室里或课堂上通常会有这么一张。这是世界的蓝本,因为就92个基本的元素构成了我们的世界。Armand Deutsch许多年前写过精彩的科学小说。一组未来的考古学家在开凿古火星人的文明遗迹,发现了一所大学。他们正为无法破解火星语言而感到困惑的时候来到一个化学实验室,在实验室的墙上发现了元素周期表---一个马上被他们识别的东西。因为它代表了通用的,超越文化甚至是种族的东西。所以,元素周期表成了破解火星语言的敲门砖。核中具有少量质子的元素有时被称为轻元素或简单元素;有大量原子的就叫重元素或复杂元素。
89 什么是离子?在鸡尾酒会上,当谈话转到“原子物质”时,经常听到的另外两个词是离子和同位素。在讨论离子时,我们就必须注意一类叫做电子的绕着原子核转的小东西。通常情况下,原子的整体是中性的,因为在原子核内带正电的质子数和核外绕核旋转的带负电的电子数相同。但是因为一些电子离原子核非常远,它们被频繁的撞击出去,这样剩下的原子所带的正电就比负电多。同样的道理,电子也可以频繁的被加给原子,使它净增负电荷。简单的说,带有正的或负的净电荷的原子就叫做离子。
90 什么是同位素?在任何关于同位素的讨论中,我们必须关注在原子核里另外一种粒子---中子。同位素是原子核里含有不同数目中子的同种元素的不同形式。举个例子来说,存在三种碳的同位素,它们是碳-12,碳-13和碳-14。这些数字与每个原子核内各自的中子数有关。因为原子核内的质子数决定着它是何种元素,所有核内有12个质子的原子都是碳原子,而不是考虑它们是不是有12、13或者14个中子。每种同位素在质量上都有微小的差距。所有碳构成的东西,不管是石墨还是钻石,都是碳同位素的混合体。
91 一些元素的某些同位素是放射性的。放射性原子自发的变成其他原子,这是一个很快的反应。有时某些原子失去原子核中的中子,变成原来元素的同位素。这样的过程叫做放射性衰变。举例来说,铀能经历一系列的放射性衰变而最终变成铅。一些元素的某些同位素是具有强放射性的,这表示它们衰变成其他东西的速率相对于其他一些衰变非常慢或根本不衰变的元素要快得多。那些衰变慢或不衰变的原子叫做放射性稳定。
92 放射性衰变以不同的速率发生。在所有给出的放射性物质的样品中,你不能事先预测其中的哪些原子将要自发衰变。原子也不会事先告诉你它们将要做什么。但是通过观察和认真的测算,科学家已经发现同种同位素的整个样品的衰变率是个常数。使任何给定样品的同位素衰变成总量一半所需的时间叫做同位素的半衰期。强放射性的同位素的半衰期很短,而稳定的同位素半衰期则很长。
93 放射性衰变是重要的科学工具。所有的这些知识变成测定某物存在时间长短的一项重要的工具。例如,如果你将存在于某物(范围可以从恐龙的骨头到都灵的寿衣再到月球上的岩石)中某种放射性同位素的总量与这个样本中与之相同元素的另一种稳定的同位素的总量相比较,然后将这些数字与你已知的不怎么久远的物品中相同的同位素的量相比较,并且你知道它放射性同位素半衰期的长度,那么你就能算出你所研究的样本有多古老。生物学家,考古学家和古生物学家大量的运用此种技术,尤其是大量使用碳的同位素,这个过程叫做碳定年。天文学家有时也采用该技术,有的时候为了方便除了碳也使用其他元素的同位素。
94 物质典型存在于三种态。我们知道三态分别是:固态,液态和气态。在特定的时间特定的地点物质处于什么态取决于物质的化学本质,环境的温度和压强。在地球上,我们找一个事物为例,我们能看到它的三个态。它由两个氢原子和一个氧原子组成: 。在一般情况下,当温度低于华氏32度时我们称之为冰,当温度在华氏32度到212度之间时我们称之为水,高于华氏212度时,我们称之为水蒸气。(在非常高的温度下,氢和氧原子之间的键被打破,它的本质就不再是水蒸气,就是氢气和氧气的混合气体。)
95 我们在温度和压强的特定范围内在宇宙中搜寻,物质会有很奇怪的组成和行为方式。以在火星上为例,气压计液柱将很难移动,因为火星几乎没有大气,所以在火星表面上基本上没有气压。在这种情况下,直接从气态的水蒸气变为固态的冰,中间没有经过变为液态水的过程。所以今天的火星上没有河流或湖泊。我们把这个过程叫做升华。樟脑球做成的东西在地球上就会升华(它们不会在衣橱里留下水汤)。简而言之,正常的状态是什么和你要进行的预测都取决于你身处于哪里。当天文学家了解了这些,研究整个宇宙就会更顺手一些。
96 当离子以气态存在时,它们形成等离子体。一些人把这个状态认为是物质的第四种状态,因为等离子体带电而常规的气体是电中性的。这个还有一点语义学的味道,只要我们知道什么是什么就好。恒星是典型的由气体组成的物体,大多数气体非常热,它们处于等离子态。这变得很有意义,因为磁场与等离子体有关而与中性气体无关。大多数恒星所带的磁场对恒星、恒星大气和物质在恒星表面上的移动或穿越有很大的影响。
97 流体:你把它放在什么样容器里它就拥有什么形状。液体,气体和等离子体常常都被称为流体,因为它们显现的都是承载它们的容器的形状。(把一品脱水倒进一个馅饼盘里,水就呈现馅饼盘的形状,把它倒入鱼缸里,它又呈现鱼缸的形状。同样的,在贴着“氖”标签罐子里的气体呈罐子的形状。)当你把两个固体拿到一起磨擦(就像天冷的时候你搓手那样),这个动作将遇到一个对抗的力,这个力叫做阻力,它会产生热量。我们通常认为流体没有阻力,但它们确实有。然而,在一定的温度和压强下,这个阻力可以变为零。在某种条件下的这种特性叫做超流。大多数恒星由流体组成的,但中子星却是由超流的中子组成。
98 固体 一些固体具有晶体结构,这意味着它们的原子是按照一定的有规则的几何样式排列的。例如盐和处于金刚石状态的碳。其他固体,比如用来做塑像的粘土,它们是无定形的,因为它们的原子不是刚性的排列。白矮星的内部类似于晶体,尽管它们的电子在核外自由的运动着,但它们的原子核是按规则的样式排列的。
99 “暗物质”是一种不同的物质。基于对星系和星系团里恒星运动的学习,天文学家知道宇宙的大部分不处于我们上面提到的那几种态,大部分物质由其他形式的离子组成。到目前为止,这种物质避过了直接观测,因为它们好像与普通的物体或任意波段的辐射都作用甚微。正因为这个原因,天文学家称呼它暗物质。暗物质的本质仍然是20世纪后期天体物理学的几个重大未解之谜之一。
100 最后,我们来介绍反物质。在恒星的研究中,斯科蒂和吉奥蒂总是很关心反物质。反物质同普通物质一样,也是由粒子组成。其实,这个粒子和我们常见的普通的粒子除了电荷相反意外,其他是一致的。所以,电子的反粒子叫做正电子,它的质量与电子相同但是带正电荷。质子的反粒子叫做反质子,质量与质子一样但是带负电。如果一个物质的粒子与它的反粒子碰撞,它们互相消灭并只释放出能量。(这就是为什么斯科蒂和吉奥蒂喜欢反物质的原因。)反物质存在于宇宙中,但是因为在它们周围存在太多的普通物质,所以它们一经产生就面临着湮灭的厄运。大块的反物质甚至是原子大小的反物质在我们的宇宙里都是不存在的。其他宇宙主要由反物质组成在理论上是可能的。










',1)">


边框系列
人物素材
古玩字画
琴棋书画
江南播放
精美图文
情感驿站
茶道人生
感悟哲理
flash特效
人物抠图
精品收藏
极品美图

江南
生活美容
生活百科
异国风情
养生保健
PS制作
幽默笑话
唯美丽人
明星系列
音画欣赏
娱乐明星
军人风采
情爱宝典
命理风水
在线工具
电脑知识
翡翠玉石
实用大全
给江南留言
明星博客
军事纵横
男人女人
星座基地