cinema4d模型素材:锂电池

来源:百度文库 编辑:中财网 时间:2024/04/29 00:10:27
目录
锂电池的概述
锂电池的特点
锂电池的结构
锂电池的应用
锂电池的研究
锂离子电池的作用
锂离子电池发展史
锂离子电池发展前景
锂电池的概述
锂电池的特点
锂电池的结构
锂电池的应用
锂电池的研究
锂离子电池的作用
锂离子电池发展史
锂离子电池发展前景
电池的基本性能
锂离子电池的特征
锂电池的保护电路
简易充电电路
单节锂电池的应用举例
锂电池的保存
注意事项
“超级”锂电池

锂电池的概述
锂电池是一类由锂金属或锂合金为负极材料、使用非水电解质溶液的电池。最早出现的锂电池来自于伟大的发明家爱迪生,使用以下反应:
Li+MnO2=LiMnO2
该反应为氧化还原反应,放电。
由于锂金属的化学特性非常活泼,使得锂金属的加工、保存、使用,对环境要求非常高。所以,锂电池长期没有得到应用。
但现在锂电池已经成为了主流。
[
锂电池的特点
1、具有更高的能量重量比、能量体积比;
2、电压高,单节锂电池电压为3.6V,约等于3只镍镉或镍氢充电电池的串联电压;
3、自放电小可长时间存放,这是该电池最突出的优越性;
4、锂电池安全性能较差;
什么是比能量呢比能量指的是单位重量或单位体积的能量。比能量用Wh/kg或Wh/L来表示。Wh是能量的单位,W是瓦、h是小时;kg是千克(重量单位),L是升(体积单位)。
锂电池的结构
锂电池通常有两种外型:圆柱型和长方型。
电池内部采用螺旋绕制结构,用一种非常精细而渗透性很强的聚乙烯薄膜隔离材料在正、负极间间隔而成。正极包括由锂和二氧化钴组成的锂离子收集极及由铝薄膜组成的电流收集极。负极由片状碳材料组成的锂离子收集极和铜薄膜组成的电流收集极组成。电池内充有有机电解质溶液。另外还装有安全阀和PTC元件,以便电池在不正常状态及输出短路时保护电池不受损坏。
单节锂电池的电压为3.6V,容量也不可能无限大,因此,常常将单节锂电池进行串、并联处理,以满足不同场合的要求。
锂电池的应用
随着二十世纪微电子技术的发展,小型化的设备日益增多,对电源提出了很高的要求。锂电池随之进入了大规模的实用阶段。
最早得以应用于心脏起搏器中。由于锂电池的自放电率极低,放电电压平缓。使得起搏器植入人体长期使用成为可能。
锂电池一般有高于3.0伏的标称电压,更适合作集成电路电源。二氧化锰电池,就广泛用于计算机,计算器,照相机、手表中。
现在,锂电池大量应用在手机上,可以说是最大的应用群体。
锂电池的研究
为了开发出性能更优异的品种,人们对各种材料进行了研究。从而制造出前所未有的产品。比如,锂二氧化硫电池和锂亚硫酰氯电池就非常有特点。它们的正极活性物质同时也是电解液的溶剂。这种结构只有在非水溶液的电化学体系才会出现。所以,锂电池的研究,也促进了非水体系电化学理论的发展。除了使用各种非水溶剂外,人们还进行了聚合物薄膜电池的研究。
锂离子电池的作用
锂离子电池目前由液态锂离子电池(LIB)和聚合物锂离子电池(PLB)两类。其中,液态锂离子电池是指 Li +嵌入化合物为正、负极的二次电池。正极采用锂化合物LiCoO2或LiMn2O4,负极采用锂-碳层间化合物。锂离子电池由于工作电压高、体积小、质量轻、能量高、无记忆效应、无污染、自放电小、循环寿命长,是21世纪发展的理想能源。
1992年Sony成功开发锂离子电池。它的实用化,使人们的移动电话、笔记本电脑等便携式电子设备重量和体积大大减小。使用时间大大延长。由于锂离子电池中不含有重金属铬,与镍铬电池相比,大大减少了对环境的污染。
锂离子电池发展史
锂电池和锂离子电池是20世纪开发成功的新型高能电池。这种电池的负极是金属锂,正极用MnO2,SOCL2,(CFx)n等。70年代进入实用化。因其具有能量高、电池电压高、工作温度范围宽、贮存寿命长等优点,已广泛应用于军事和民用小型电器中,如移动电话、便携式计算机、摄像机、照相机等、部分代替了传统电池。
锂离子电池发展前景
锂离子电池以其特有的性能优势已在便携式电器如手提电脑、摄像机、移动通讯中得到普遍应用。目前开发的大容量锂离子电池已在电动汽车中开始试用,预计将成为21世纪电动汽车的主要动力电源之一,并将在人造卫星、航空航天和储能方面得到应用。随着能源的紧缺和世界的环保方面的压力。锂电现在被广泛应用于电动车行业,特别是磷酸铁锂材料电池的出现,更推动了锂电池产业的发展和应用。
电池的基本性能
(1)电池的开路电压
(2)电池的内阻
(3)电池的工作电压
(4)充电电压
充电电压是指二次电池在充电时,外电源加在电池两端的电压。充电的基本方法有恒电流充电和恒电压充电。一般采用恒电流充电,其特点时在充电过程中充电电流恒定不变。随着充电的进行,活性物质被恢复,电极反应面积不断缩小,电机的极化逐渐增高。
(5)电池容量
电池容量是指从电池获得电量的量,常用C表示,单位常用Ah或mAh表示。容量是电池电性能的重要指标。电池的容量通常分为理论容量、实际容量和额定容量。
电池容量由电极的容量决定,若电极的容量不等,电池的容量取决于容量小的那个电极,但决不是正负极容量之和。
(6)电池的贮存性能和寿命
化学电源的主要特点之一是在使用时能够放出电能,不用时能贮存电能。所谓贮存性能对于二次电池来说为充电保持能力。
对于二次电池,使用寿命时衡量电池性能好坏的一个重要参数。二次电池经过一次充电和放电,称为一个周期(或已此循环)。在一定的充放电制度下,电池容量达到某一规定值之前电池能经受的充放电次数称为二次电池的使用周期。锂离子电池具有优良的贮存性能和长的循环寿命。
锂离子电池的特征
A. 高能量密度
锂离子电池的重量是相同容量的镍镉或镍氢电池的一半,体积是镍镉的40-50%,镍氢的20-30%。
B. 高电压
一个锂离子电池单体的工作电压为3.6V(平均值),相当于三个串联的镍镉或镍氢电池。
C. 无污染
锂离子电池不含有诸如镉、铅、汞之类的有害金属物质。
D. 不含金属锂
锂离子电池不含金属锂,因而不受飞机运输关于禁止在客机携带锂电池等规定的限制。
E. 循环寿命高
在正常条件下,锂离子电池的充放电周期可超过500次。
F. 无记忆效应
记忆效应是指镍镉电池在充放电循环过程中,电池的容量减少的现象。锂离子电池不存在这种效应。
G. 快速充电
使用额定电压为4.2V的恒流恒压充电器可以使锂离子电池在一至两个小时内得到满充。
锂电池的保护电路

由两个场效应管和专用保护集成块S--8232组成,过充电控制管FET2和过放电控制管FET1串联于电路,由保护IC监视电池电压并进行控制,当电池电压上升至4.2V时,过充电保护管FET1截止,停止充电。为防止误动作,一般在外电路加有延时电容。当电池处于放电状态下,电池电压降至2.55V时,过放电控制管FET1截止,停止向负载供电。过电流保护是在当负载上有较大电流流过时,控制FET1使其截止,停止向负载放电,目的是为了保护电池和场效应管。过电流检测是利用场效应管的导通电阻作为检测电阻,监视它的电压降,当电压降超过设定值时就停止放电。在电路中一般还加有延时电路,以区分浪涌电流和短路电流。该电路功能完善,性能可靠,但专业性强,且专用集成块不易购买,业余爱好者不易仿制。
因为Li+电池过充或过放可能会导致爆炸并造成人员伤害,所以使用这类电池时,安全是主要关心的问题。因此,商用锂离子电池组通常包括象DS2720这样的保护电路(图7)。DS2720提供了可充电Li+电池所需的所有保护功能,如:在充电时保护电池、防止电路过流、通过限制电池的放电电压延长电池寿命。电路如上图。.
简易充电电路
现在有不少商家出售不带充电板的单节锂电池。其性能优越,价格低廉,可用于自制产品及锂电池组的维修代换,因而深受广大电子爱好者喜爱。有兴趣的读者可参照图二制作一块充电板。其原理是:采用恒定电压给电池充电,确保不会过充。输入直流电压高于所充电池电压3伏即可。R1、Q1、W1、TL431组成精密可调稳压电路,Q2、W2、R2构成可调恒流电路,Q3、R3、R4、R5、LED为充电指示电路。随着被充电池电压的上升,充电电流将逐渐减小,待电池充满后R4上的压降将降低,从而使Q3截止, LED将熄灭,为保证电池能够充足,请在指示灯熄灭后继续充1—2小时。使用时请给Q2、Q3装上合适的散热器。本电路的优点是:制作简单,元器件易购,充电安全,显示直观,并且不会损坏电池.通过改变W1可以对多节串联锂电池充电,改变W2可以对充电电流进行大范围调节。缺点是:无过放电控制电路。
单节锂电池的应用举例
1、作电池组维修代换品有许多电池组:如笔记本电脑上用的那种,经维修发现,此电池组损坏时仅是个别电池有问题。可以选用合适的单节锂电池进行更换。
2、制作高亮微型电筒笔者曾用单节3.6V1.6AH锂电池配合一个白色超高亮度发光管做成一只微型电筒,使用方便,小巧美观。而且由于电池容量大,平均每晚使用半小时,至今已用两个多月仍无需充电。
3、代替3V电源
由于单节锂电池电压为3.6V。因此仅需一节锂电池便可代替两节普通电池,给收音机、随身听、照相机等小家电产品供电,不仅重量轻,而且连续使用时间长。
锂电池的保存
锂电池需充足电后保存。在20℃下可储存半年以上,可见锂电池适宜在低温下保存。曾有人建议将充电电池放入冰箱冷藏室内保存,的确是个好主意。
锂电池存在自放电现象,长时间保存会导致电池过放电而破坏电池内部结构,减少电池寿命。因此长期保存的锂电池应当每3~6个月补电一次,即充电到电压为3.8~3.9V(锂电池最佳储存电压为3.85V左右)为宜。
注意事项
锂离子电池的使用,注意三点:
1、如何为新电池充电
在使用锂电池中应注意的是,电池放置一段时间后则进入休眠状态,此时容量低于正常值,使用时间亦随之缩短。但锂电池很容易 激活,只要经过3—5次正常的充放电循环就可 激活 电池,恢复正常容量。由于锂电池本身的特性,决定了它几乎没有记忆效应 。因此用户新锂电池在激活过程中,是不需要特别的方法和设备的。不仅理论上是如此,从我自己的实践来看,从一开始就采用标准方法充电这种“自然激活”方式是最好的。
对于锂电池的“激活”问题,众多的说法是:充电时间一定要超过12小时,反复做三次,以便 激活 电池。这种“前三次充电要充12小时以上”的说法,明显是从镍电池(如镍镉和镍氢)延续下来的说法。所以这种说法,可以说一开始就是误传。锂电池和镍电池的充放电特性有非常大的区别,而且可以非常明确的告诉大家,我所查阅过的所有严肃的正式技术资料都强调过充和过放电会对锂电池、特别是液体锂离子电池造成巨大的伤害。因而充电最好按照标准时间和标准方法充电,特别是不要进行超过12个小时的超长充电。
此外,锂电池或充电器在电池充满后都会自动停充,并不存在镍电充电器所谓的持续10几小时的“涓流”充电。也就是说,如果你的锂电池在充满后,放在充电器上也是白充。而我们谁都无法保证电池的充放电保护电路的特性永不变化和质量的万无一失,所以你的电池将长期处在危险的边缘徘徊。这也是我们反对长充电的另一个理由。
此外在对某些机器上,充电超过一定的时间后,如果不去取下充电器,这时系统不仅不停止充电,还将开始放电-充电循环。也许这种做法的厂商自有其目的,但显然对电池的寿命而言是不利的。同时,长充电需要很长的时间,往往需要在夜间进行,而以我国电网的情况看,许多地方夜间的电压都比较高,而且波动较大。前面已经说过,锂电池是很娇贵的,它比镍电在充放电方面耐波动的能力差得多,于是这又带来附加的危险。
此外,不可忽视的另外一个方面就是锂电池同样也不适合过放电,过放电对锂电池同样也很不利。这就引出下面的问题。
2、正常使用中应该何时开始充电
因为充放电的次数是有限的,所以应该将锂电池的电尽可能用光再充电。但是我找到一个关于锂离子电池充放电循环的实验表,关于循环寿命的数据列出如下:
循环寿命 (10%DOD):>1000次
循环寿命 (100%DOD):>200次
其中DOD是放电深度的英文缩写。从表中可见,可充电次数和放电深度有关,10%DOD时的循环寿命要比100%DOD的要长很多。当然如果折合到实际充电的相对总容量:10%*1000=100,100%*200=200,后者的完全充放电还是要比较好一些,但前面网友的那个说法要做一些修正:在正常情况下,你应该有保留地按照电池剩余电量用完再充的原则充电,但假如你的电池在你预计第2天不可能坚持整个白天的时候,就应该及时开始充电,当然你如果愿意背着充电器到办公室又当别论。
而你需要充电以应付预计即将到来的会导致通讯繁忙的重要事件的时候,即使在电池尚有很多余电时,那么你也只管提前充电,因为你并没有真正损失“1”次充电循环寿命,也就是“0.x”次而已,而且往往这个x会很小。
电池剩余电量用完再充的原则并不是要你走向极端。和长充电一样流传甚广的一个说法,就是“尽量把机器的电池的电量用完,最好用到自动关机”。这种做法其实只是镍电池上的做法,目的是避免 记忆效应 发生,不幸的是它也在锂电池上流传之今。曾经有人因为机器电池电量过低的警告出现后,仍然不充电继续使用一直用到自动关机的例子。结果这个例子中的机器在后来的充电及开机中均无反应,不得不送客服检修。这其实就是由于电池因过度放电而导致电压过低,以至于不具备正常的充电和开机条件造成的。
3、对锂电池的正确做法
归结起来,对锂电池在使用中的充放电问题最重要的提示是:
1、按照标准的时间和程序充电,即使是前三次也要如此进行;
2、当出现机器电量过低提示时,应该尽量及时开始充电;
3、锂电池的激活并不需要特别的方法,在机器正常使用中锂电池会自然激活 。如果你执意要用流传的“前三次12小时长充电 激活 ”方法,实际上也不会有效果。
因此,所有追求12小时超长充电和把锂电池用到自动关机的做法,都是错误的。如果你以前是按照错误的说法做的,请你及时改正,也许为时还不晚。
4、使用锂电池注意防火
有许多人或许是从手机才开始熟悉锂电池的。其实,它在许多家电中都有使用。毋庸置疑,锂电池高效、体轻等等优点正使其迅速地推广应用开来。可是,你是否知道,使用不慎,它也会使你惹“火”上身?
锂电池具有体轻、高效、耐低温(-40℃)等优点,0.3mm厚、邮票大小的锂电池可连续使用5年以上,近年来正逐步淘汰现用的碱性干电池和锰电池,广泛应用于许多高档家电和手机中。
锂电池不同于现用的锰电池和碱性干电池的氯化锌和氢氧化钾水溶电解液,它使用的是有机溶媒。锂电池正极采用二氧化锰、氟化铅、氯化亚硫等材料。负极采用的锂金属箔同一般电池负极使用的氯化锌相比,离子化倾向强、正负极电压差大,这样提高了锂电池的工作效能。
但是,锂电池在使用过程中常常会出现发热、燃烧现象,轻者影响主机使用,重者还会烧毁主机引起火灾。据报道,日本近年来已发生多起因锂电池发热燃烧引起的家庭火灾事故。
那么锂电池为什么会发热、燃烧呢?原来锂电池中的许多材料与水接触后,可发生剧烈的化学反应并释放出大量热能导致发热、燃烧现象。锂电池正极的二氧化锰,只沾一小滴水便可出现发热现象。锂电池中的氯化亚硫与水接触后,在生成盐酸和二氧化硫的同时释放热能,几种因素使锂电池成为生活中的“火种”,因此人们在使用锂电池时一定要注意防水、防潮湿。各种主机停用后,应取下锂电池置于干燥、低温处妥善保管,以预防和避免因锂电池使用不当而引起家庭火灾事故的发生。
“超级”锂电池
刚研发出来的超级锂电池能在短时间迅速充电完成,例如手机充电一般20秒,这种电池有点加大电池未来的使用领域。
锂锰电池常规型号
电池型号
标称电压
(V)
标称容量
(mAh)
工作电流(mA)
连续电流
脉冲电流
最大尺寸(mm)
直径*高度
重量(g)
标准电流
CR3032
3V
550mAh
0.2mA
3.0mA
20mA
30.0mm*3.2mm
6.8g
CR2477
3v
950mAh
0.2mA
3.0mA
20mA
24.5mm*7.7mm
9.9g
CR2450
3v
550mAh
0.2mA
3.0mA
20mA
24.5mm*5.0mm
5.8g
CR2430
3v
270mAh
0.2mA
3.0mA
20mA
24.5mm*3.0mm
4.3g
CR2412
3v
90mAh
0.1mA
1.0mA
15mA
24.5mm*1.2mm
2.2g
CR2354
3v
530mAh
0.2mA
3.0mA
20mA
23.0mm*5.4mm
6.3g
CR2335
3V
300mAh
0.2mA
3.0mA
20mA
23.0mm*3.5mm
4.2g
CR2330
3V
260mAh
0.2mA
2.0mA
20mA
23.0mm*3.0mm
3.7g
CR2325
3V
190mAh
0.2mA
2.0mA
20mA
23.0mm*2.5mm
3.2g
CR2320
3V
130mAh
0.2mA
2.0mA
20mA
23.0mm*2.0mm
2.7g
CR2032
3V
220mAh
0.2mA
2.0mA
20mA
20.0mm*3.2mm
3.0g
CR2025
3V
150mAh
0.2mA
2.0mA
20mA
20.0mm*2.5mm
2.5g
CR2016
3V
75mAh
0.1mA
1.0mA
15mA
20.0mm*1.6mm
1.7g
CR1632
3V
120mAh
0.1mA
1.0mA
15mA
16.0mm*3.2mm
1.8g
CR1620
3 V
70mAh
0.1mA
1.0mA
10mA
16.0mm*2.0mm
1.2g
CR1616
3V
50mAh
0.1mA
1.0mA
10mA
16.0mm*1.6mm
1.1g
CR1225
3V
50mAh
0.1mA
1.0mA
5mA
12.5mm*2.5mm
0.9g
CR1216
3V
25mAh
0.1mA
1.0mA
5mA
12.0mm*1.6mm
0.7
CR1025
3V
30mAh
0.1mA
1.0mA
5mA
10.0mm*2.5mm
0.6g
CR1220
3V
38mAh
0.1mA
1.0mA
5mA
12.0mm*2.0mm
0.8g
基于TL431的锂电池均衡电路的研究
张好明, 孙玉坤, 庄淑瑾
江苏大学 电气信息工程学院, 江苏 镇江212013
2008-07-15
摘 要: 在实际应用中,由于锂电池单体之间的差异性,经一段时间的充放电后发现各单体电池上、下限电压出现参差不齐的现象,严重影响到系统的性能。针对这种情况提出了上均衡和下均衡的概念,然后对锂电池的上、下均衡电路进行了深入研究。实验结果证明,几种锂电池均衡电路设计的正确性,为研究高性能混合动力系统奠定了坚实的基础。
关键词: 混合电动汽车  锂电池保护  均衡电路
现今用于储能装置中的动力性电池有:铅酸电池、镍氢电池和锂离子电池。
铅酸电池由于含有有毒物质铅,且其具有能量密度低,充放电寿命短、废弃物难处理等缺点,基本上已被未来的储能系统所淘汰[1]。
镍氢电池属于碱性电池,由于单体电压相对较低,且有“记忆效应”,定期的大规模放电是必须的,这在很大程度上加重了电源管理系统的任务。其次,其还具有自放电率高(10%~15%)的缺点[2-3]。
与其他电池相比,锂离子电池具有功率密度高(800W/Kg)、单体电压高(平均电压为3.6V)、不污染环境、自放电率低(约为3%~5%),没有“记忆效应”等特点,是一种理想的动力性电池[4],所以被广泛地应用在移动电源、混合动力汽车、中低压开关柜中的备用电源以及航天飞行储能器等装置当中。
1 国内现有锂电池保护电路的缺陷
锂电池单体平均电压只有3.6V,放电电流也有一定的要求。为了提高系统的电流和电压等级,在一些动力性场合一般采用并联后再串联组成大电流大电压锂电池组作为能源系统。由于锂电池对电压非常敏感,电池组在使用时一般要增加一定的保护电路。参看国内大部分动力性锂电池保护电路发现,其保护电路相当简单,一般只包括过压/欠压/过流/短路保护等。在一般使用条件下,这个电池组可以在短时间内进行正常的充电和放电。但是,把带有此保护电路的锂电池组用于混合动力汽车系统当中,经过一个阶段的大电流放电和充电后,发现各个单体之间的上限电压和下限电压出现严重的不一致:有的电池单体在其他电池电压还处于正常充电条件时,由于自身电压达到了上限保护门槛而关闭充电通道,致使整个能量系统总压达不到预定要求;有的电池单体在其他电池电压还处于正常放电条件时,由于自身电压达到了下限保护门槛电压而关闭放电通道,致使整个能源系统不能完全放电。上述两种现象严重影响了能源系统的性能,对电池进行均衡控制是解决上述现象最有效的办法。
2 改进型锂电池保护电路原理
均衡电路是指人为加入的硬件电路,它可以使整个电池组的单体上限电压之间或单体下限电压之间保持一致性,从而有效地保护电池的上限充电电压和下限放电电压,从根本上降低电池对系统的影响,从而达到提高电池性能和延长电池寿命的目的。它包括上均衡和下均衡两种电路,顾名思义,它们分别保护电池上限电压和电池下限电压。
本文针对混合动力汽车设计了两套电源系统:3串锂电池保护系统(最高电压为12.75V,平均放电电压为10.8V)和10串锂电池保护系统(最高电压为42.5V,平均放电电压为36V),放电电流分别为10A和40A。系统原理如图1所示,即在其基本保护电路(过压/欠压/过温/过流/短路保护)的基础上加入了上、下均衡电路。
2.1 TL431均衡电路
TL431为一并联型三端稳压管,其基本特性可参阅参考文献[5],本文利用其基于特性设计的上均衡电路如图2所示。调节R1、R2、R3的阻值,当电源电压超过某一设定值时便开通TL431,通过功率电阻R*耗能来降低电池的电压,使其达到一固定点(均衡点)。通过为国内电动车及电动摩托车配备的均衡电路的实验效果来看,当均衡点取4.20V时,电阻的取值分别为:R1=68kΩ,R2=100kΩ,R3=4.3kΩ。
基于TL431的下均衡电路如图3所示。当开关断开时,由于光耦817前级没有开通,因此光耦后级电路也就无法工作,电池工作在正常的放电状态;当开关闭合时,后级光耦随前级光耦的开通也相继开通,电路通过功耗电阻R18耗能来降低电池电压直到保护芯片送出低电平给保护芯片,迫使电池电压稳定在其下限限制电压Vmin,从而达到下均衡的目的。
从上述均衡的电路原理可以看出,电路的均衡电流不能超过TL431的上限保护电流(70mA左右)。由于受均衡能力的限制,无法应用于大电流充放电的电路当中。为了增加电路的均衡能力而又不损害TL431,可以采用并联TL431的办法。
2.2 并联型TL431均衡电路
并联型TL431下均衡电路如图4所示。其原理与图3类似,只是通过并联TL431的方法来达到扩大均衡电流的目的。在实际生产中发现,由于TL431特性之间有微小的差异,使得两路均衡电流不完全一致。为了减少上述现象的发生,一般采用筛选配对TL431的方法来完善上述电路,这无疑加大了生产的工作量。
2.3 改进型TL431均衡电路
为了增加电路的均衡能力,同时减少生产中筛选TL431的工作量,本文借助中功率三极管8550设计改进型均衡电路,如图5所示。一旦电源过充时,TL431便开通,8550的发射PN结由于承受正压而开通,功耗电阻便消耗电池电能,直至把电池电压拖到均衡点。均衡一旦开始,图中发光二极管便会发光,起工作指示作用。通过调节图中R1、R2、R3的阻值,便可以设置保护板的上均衡点。图中R1、R2、R3阻值相对较大,在TL431关闭后对均衡点影响较小,可忽略不计。下均衡电路也如图5所示,只是改变一下R1、R2、R3的相应阻值。
3 实验结果
用具有上述功能的几套10串锂电池保护板驱动一台400W直流电机进行实验,发现所有保护板在锂电池系统总压为42.5V左右时关断充电场管进行过压保护;在总压为29.2V左右时关断放电场管进行欠压保护;将带有保护板的锂电池组放到检测台上进行过流检测发现:放电电流为39A左右时,保护板均进行过流保护;温度开关在109°C时关断放电回路,有效地保护了放电场管。上述数据表明,电路基本上满足了过压/欠压/过流/过温保护等基本要求。
经过长时间来回充放电实验后,采集有关数据进行绘图,可以得到有、无均衡电路的实验数据波形对比如下:带有上均衡电路的锂电池组1和锂电池组2各电池上限电压变化如图6和图7所示;无上均衡保护的锂电池组3各电池上限电压变化如图8所示;带有下均衡保护的锂电池组4和锂电池组5各电池下限电压变化如图9和图10所示,无均衡电路的锂电池组6各电池下限电压变化如图11所示。图中所有曲线1各点为第一次测得的电池上限(下限)电压值、曲线2各点为长期运行后测得的电池上限(下限)电压值。
从图6、图7和图8的数据图形对比可以看出:上均衡电路的加入使得电池的上限电压均保持在均衡点4.22V和4.18V左右,有效地保护了电池的上限电压,无均衡电路的电池上限电压则显得杂乱无章;从图9、图10和图11的数据图形对比可以看出:下均衡电路的加入使得电池的下限电压均保持在下均衡点2.91V左右,有效地保护了电池的下限电压,无均衡电路的电池下限电压则显得杂乱无章,严重损害了电池性质的一致性和寿命。
本文从工程实践出发,针对动力性锂电池在高倍率放电一个阶段后所出现的上下限电压参差不齐的现象,提出了基于TL431的均衡电路,并对锂电池的均衡电路进行了深入研究。实践结果证明,所设计的上均衡电路和下均衡电路不仅保证了电池高倍率放电后电池电量一致性的要求,而且还有效地保护了电池的上下限电压,为进一步研究高性能的蓄电池储能系统和混合动力汽车系统奠定了坚实的基础。
参考文献
[1]  陈全世,仇斌.燃料电池电动汽车[M].北京:清华大学出版社,2005.
[2]  胡骅,宋慧.电动汽车[M].北京:人民交通出版社,2002.
[3]  刘金玲.并联混合动力客车控制策略研究[D]. 北京:清华大学硕士论文,2005.
[4]  熊志伟. 混合动力城市客车动力系统研究[D]. 武汉:武汉理工大学硕士论文,2004.
[5]  朱庆,房绪鹏.TL431在镍镉电池充电电路中的一种应用[J].山东电子,2001,(3).
图片名称:    电动车简易充电器电路图

图片资料