八路军将领:802.11

来源:百度文库 编辑:中财网 时间:2024/04/28 14:00:27
背景:  

扫盲——无线协议知多少

[日期: 2007-12-11 ] 千家综合布线网 www.cabling-system.com [字体:大 中 小]

  身边的无线产品越来越多,但不少人对无线网络都是一知半解。什么样的无线网卡配什么样的无线路由或许也会难倒一片人。这里小编来一次彻底的“无线”扫盲。

  这里说的无线网络主要以无线局域网络为主,无线协议大概包括IEEE802.11、IEEE802.11a、IEEE802.11b、IEEE802.11g、IEEE802.11n。

  802.11是IEEE(电气和电子工程师协会)最初制定的一个无线局域网标准,主要用于解决办公室局域网和校园网中用户与用户终端的无线接入,主要限于数据存取,速率最高只能达到2Mbps。由于它在速率和传输距离上都不能满足人们的需要,因此,IEEE(电气和电子工程师协会)随后又相继推出了802.11b和802.11a两个新标准,2001年11月,第三个新的标准802.11g业已面世。尽管目前802.11a和802.11g倍受业界关注,但从实际的应用上来讲,802.11b已成为无线局域网(WLAN)的主流标准,被多数厂商所采用,并且已经有成熟的无线产品推向市场。

802.11b

  B标准的之前应用已经非常广泛,并基本被a、g取代。带宽最高达11Mbps,采用2.4GHz直接序列扩频,最大数据传输速率为11Mb/s,无须直线传播。动态速率转换当射频情况变差时,可将数据传输速率降低为5.5Mb/s、2Mb/s和1Mb/s。支持的范围是在室外为300 米,在办公环境中最长为100米。802.11b使用与以太网类似的连接协议和数据包确认,来提供可靠的数据传送和网络带宽的有效使用。

802.11a

  A标准工作在5GHzU-NII频带,物理层速率可达54Mb/s,传输层可达25Mbps。可提供25Mbps的无线ATM接口和10Mbps的以太网无线帧结构接口,以及TDD/TDMA的空中接口;支持语音、数据、图像业务;一个扇区可接入多个用户,每个用户可带多个用户终端。

802.11g

  802.11g其实是一种混合标准,它既能适应传统的802.11b标准,在2.4GHz频率下提供每秒 11Mbit/s数据传输率,也符合802.11a标准在 5GHz频率下提供 56Mbit/s数据传输率。

802.11n

  重点介绍一下n标准,未来定会成为主流。其诞生是为了实现高带宽、高质量的WLAN服务,使无线局域网达到以太网的性能水平。在传输速率方面,802.11n可以将WLAN的传输速率由目前802.11a及802.11g提供的54Mbps、108Mbps,提供到300Mbps甚至高达600Mbps。在覆盖范围方面,802.11n采用智能天线技术,通过多组独立天线组成的天线阵列,可以动态调整波束,保证让WLAN用户接收到稳定的信号,并可以减少其它信号的干扰。因此其覆盖范围可以扩大到好几平方公里,使WLAN移动性极大提高。在兼容性方面,802.11n采用了一种软件无线电技术,它是一个完全可编程的硬件平台,使得不同系统的基站和终端都可以通过这一平台的不同软件实现互通和兼容,这使得WLAN的兼容性得到极大改善。这意味着WLAN将不但能实现802.11n向前后兼容,而且可以实现WLAN与无线广域网络的结合,比如3G。

802.11g

  IEEE802.11工作组近年来开始定义新的物理层标准IEEE802.11g。与以前的IEEE802.11协议标准相比,IEEE802.11g草案有以下两个特点:在2.4GHz频段使用正交频分复用(OFDM)调制技术,使数据传输速率提高到20Mbit/s以上;能够与IEEE802.11b的Wi-Fi系统互联互通,可共存于同一AP的网络里,从而保障了后向兼容性。这样原有的WLAN系统可以平滑地向高速WLAN过渡,延长了IEEE802.11b产品的使用寿命,降低了用户的投资。2003年7月IEEE802.11工作组批准了IEEE802.11g草案,该标准成为人们关注的新焦点。
  IEEE802.11WLAN实现的关键技术
  随着WLAN技术的应用日渐广泛,用户对数据传输速率的要求越来越高。但是在室内这个较为复杂的电磁环境中,多经效应、频率选择性衰落和其它干扰源的存在使得无线信道中高速数据传输的实现比有线信道困难,因此WLAN需要采用合适的调制技术。
  IEEE802.11WLAN是一种能支持较高数据传输速率(1~54Mbit/s),采用微蜂窝、微微蜂窝结构,自主管理的计算机局域网络。其关键技术大致有3种,直序列扩频调制技术(DSSS:Direct Sequence Spread Spectrum)及补码键控(CCK:Complementary Code Keying)技术、包二进制卷积(PBCC:Packet Binary Convolutional Code)和正交频分复用技术OFDM:Orthogonal Frequency Division Mustiplexing。每种技术皆有其特点,目前扩频调制技术正成为主流,而OFDM技术由于其优越的传输性能成为人们关注的新焦点。
  1.DSSS调制技术
  基于DSSS的调制技术有3种。最初IEEE802.11标准制定在1Mbit/s数据速率下采用差分二相相移键控(DBPSK:DifferentialBinary Phase Shift Keying)。如果要提供2 Mbit/s的数据速率,可采用差分正交相移键控(DQPSK: Differential Quadrature Phase Shift Keying),这种方法每次处理两个比特码元,成为双比特。第三种是基于CCK的QPSK,是IEEE802.11b标准采用的基本数据调制方式。它采用了补码序列与直序列扩频技术,是一种单载波调制技术,通过相移键控(PSK)方式传输数据,传输速率分为1,2,5.5和11 Mbit/s。CCK通过与接收端的Pake接收机配合使用,能够在高效率传输数据的同时有效克服多径效应。IEEE802.11b通过使用CCK调制技术来提高数据传输速率,最高可达11 Mbit/s。但是当传输速率超过11 Mbit/s,CCK为了对抗多径干扰,需要更复杂的均衡及调制,实现起来非常困难。因此,IEEE802.11工作组为了推动WLAN的发展,又引入了新的调制技术。
  2.PBCC调制技术
  PBCC调制技术是由德州仪器(TI)公司提出的,已作为IEEE802.11g的可选项被采纳。PBCC也是单载波调制,但与CCK不同,它采用了更多复杂的信号星座图。PBCC采用8PSK,而CCK使用BPSK/QPSK;另外PBCC使用了卷积码,而CCK使用区块码。因此,它们的解调过程是十分不同的。PBCC可以完成更高速率的数据传输,其传输速率为11,22,33Mbit/s。
  3.OFDM技术
  OFDM技术其实是多载波调制(MCM:Multi-CarrierModulation)的一种。其主要思想是:将信道分成许多正交子信道,在每个子信道上进行窄带调制和传输,这样减少了子信道之间的相互干扰。每个子信道上的信号带宽小于信道的相关带宽,因此每个子信道上的频率选择性衰落是平坦的,大大消除了符号间干扰。
  由于在OFDM系统中各个子信道的载波相互正交,于是它们的频谱是相互重叠的,这样不但减少了子载波间的相互干扰,同时还提高了频谱利用率。在各个子信道中的这种正交调制和解调可以采用反向快速傅里叶变换(IFFT)和快速傅里叶变换(FFT)方法来实现,随着大规模集成电路技术与DSP技术的发展,IFFT和FFT都是非常容易实现的。FFT的引入,大大降低了OFDM实现的复杂性,提升了系统的性能。
  无线数据业务一般都存在非对称性,即下行链路中传输的数据量要远远大于上行链路中的数据传输量。因此无论从用户高速数据传输业务的需求,还是从无线通信自身来考虑,都希望物理层支持非对称高速数据传输,而OFDM很容易通过使用不同数量的子信道来实现上行和下行链路中不同的传输速率。
  由于无线信道存在频率选择性,所有的子信道不会同时处于比较深的衰落情况中,因此可以通过动态比特分配以及动态子信道分配的方法,充分利用信噪比高的子信道,从而提升系统性能。由于窄带干扰只能影响一小部分子载波,因此OFDM系统在某种程度上能抵抗这种干扰。
  OFDM技术有非常广阔的发展前景,已成为第四代移动通信的核心技术。IEEE802.11a/g标准为了支持高速数据传输都采用了OFDM调制技术。目前,OFDM结合时空编码、分集、干扰〔包括码间干扰(ISI)和信道间干扰(ICI)〕抑制以及智能天线技术,最大程度提高了物理层的可靠性。如再结合自适应调制、自适应编码以及动态子载波分配、动态比特分配算法等技术,可以使其性能得到进一步优化。
  4.IEEE802.11g协议帧结构及其技术细节
  从网络逻辑结构上来看,IEEE802.11只定义了物理层及MAC子层。MAC层提供对共享无线介质的竞争使用和无竞争使用,具有无线介质访问、网络连接、数据验证和保密等功能。
  物理层为数据链路层提供物理连接,实现比特流的透明传输,所传数据单位为比特。物理层定义了通信设备与接口硬件的机械、电气功能和过程的特性,用以建立、维持和释放物理连接。 物理层由三部分组成:物理层管理层、物理层会聚协议(PLCP)和物理介质依赖子层(PMD)。
  IEEE802.11g的物理帧结构分为前导信号(Preamble)、信头Header和负载Payload。Preamble主要用于确定移动台和接入点之间何时发送和接收数据,传输进行时告知其它移动台以免冲突,同时传送同步信号及帧间隔。Preamble完成,接收方才开始接收数据。Header在Preamble之后用来传输一些重要的数据比如负载长度、传输速率、服务等信息。由于数据率及要传送字节的数量不同,Payload的包长变化很大,可以十分短也可以十分长。
  在一帧信号的传输过程中,Preamble和Header所占的传输时间越多,Payload用的传输时间就越少,传输的效率越低。
  综合上述3种调制技术的特点,IEEE802.11g采用了OFDM等关键技术来保障其优越的性能,分别对Preamble,Header,Payload进行调制,这种帧结构称为OFDM/OFDM方式。
  另外,IEEE802.11g草案标准规定了可选项与必选项,为了保障与IEEE802.11b兼容也可采用CCK/OFDM和CCK/PBCC的可选调制方式。因此,OFDM调制为必选项保障传输速率达到54Mbit/s;采用CCK调制作为必选保障后向兼容性;CCK/PBCC与CCK/OFDM作为可选项。IEEE802.11g的帧结构比较见表1。
  (1)OFDM/OFDM
  Preamble,Header和Payload都使用OFDM进行调制传输,其传输速率可达54Mbit/s。OFDM的一个好特点是它有短的Preamble,CCK调制信号的帧头是72μs,而OFDM调制信号的帧头仅为16μs。帧头是一个信号的重要组成部分,帧头占有时间的减少,提高了信号传送数据的能力。OFDM允许较短的Header给更多的时间用于传输数据,具有较高的传输效率。因此,对于11Mbit/s的传输速率,CCK调制是一个好的选择,但要继续提升速率必须使用OFDM调制技术。它的最高传输速率可达54Mbit/s。IEEE802.11g协议中的OFDMOFDM方式也可以和Wi-Fi共存,不过它需使用RTS/CTS协议来解决冲突问题。
  (2)CCK/OFDM
  它是一种混合调制方式,是IEEE802.11g的可选项。其Header和Preamble用CCK调制方式传输,OFDM技术传送负载。由于OFDM技术和CCK技术是分离的,因此在Preamble和Payload之间要有CCK和OFDM的转换。
  IEEE802.11g用CCK/OFDM技术来保障与IEEE802.11b共存。IEEE802.11b不能解调OFDM格式的数据,所以难免会发生数据传输冲突,IEEE802.11g使用CCK技术传输Header和Preamble就可以使IEEE802.11b兼容,使其可以接收IEEE802.11g的Header从而避免冲突。这样保障了与IEEE802.11bWi-Fi设备的后向兼容性,但由于Preamble/Header使用CCK调制,增大了开销,传输速率比OFDMOFDM方式的有所下降。
  (3)CCK/PBCC
  CCK/PBCC和CCK/OFDM一样,PBCC也是混合波形,包头使用CCK调制而负载使用PBCC调制方式,这样它可以工作于高速率上并与IEEE802.11b兼容。PBCC调制技术最高数据传输速率是33Mbit/s,比OFDM或CCK/OFDM的传送速率低。
  IEEE802.11g的性能分析 
  尚未正式成为标准的IEEE802.11g草案由于其不同的特点,成为人们关注的焦点。IEEE802.11g与IEEE802.11b的兼容性,与同频设备的共存能力及OFDM技术自身的问题将成为研究热点。
  1.IEEE802.11g的兼容性
  IEEE802.11g兼容性指的是IEEE802.11g设备能和IEEE802.11b设备在同一个AP节点网络里互联互通。IEEE802.11g的一个最大特点就是要保障与IEEE802.11bWi-Fi系统兼容。IEEE802.11g可以接收OFDM和CCK数据,但传统的Wi-Fi系统只能接收CCK信息,这就产生了一个问题,即在两者共存的环境中如何解决由于IEEE802.11b不能解调OFDM格式信息帧头所带来的冲突问题。而为了解决上述问题,IEEE802.11g采用了RTS/CTS技术。
  最初,IEEE802.11引入RTS/CTS机制是为了解决隐蔽站问题,即发送站检测不到另一个站在发送数据,因而在接收站发生碰撞的情况。
  IEEE802.11b与IEEE802.11g混合工作的情况与隐蔽站问题非常相似,IEEE802.11b设备无法接收OFDM格式的IEEE802.11g的信息帧头,因此可以采用RTS/CTS机制来解决。一楼:Wifi基础介绍扫盲

二楼:无线网络常术语

三楼:无线网络常用安全技术简析

四楼:关于WIFI 常见的自问自答

五楼:关于家庭wifi(无线)组网与布线问题

六楼:iPhone 设置问题[待续]

------------------------------



WIFI基础介绍扫盲

引用
什么是WLAN?
[quote]无线局域网的缩写,指采用802.11无线技术进行互连的一组计算机和相关设备。也称为LAWN。

无线局域网(Wireless Local Area Network,即WLAN)是指以无线信道作传输媒介的计算机局域网,是有线联网方式的重要补充和延伸,并逐渐成为计算机网络中一个至关重要的组成部分,广泛适用于需要可移动数据处理或无法进行物理传输介质布线的领域。随着IEEE802.11无线网络标准的制定与发展,使无线网络技术更加成熟与完善。并已成功的广泛应用于众多行业,如金融证券、教育、大型企业、工矿港口、机关、酒店、机场、军队等。产品主要包括:无线接入点、无限网卡、无线路由器、无线网关、无线网桥等。




什么是Wi-Fi(WiFi)?
引用 wiFi的全称是Wireless Fidelity,又叫802.11b标准,是IEEE定义的一个无线网络通信的工业标准。该技术使用的使2.4GHz附近的频段,该频段目前尚属没用许可的无线频段。其主要特性为:速度快,可靠性高,在开放性区域,通讯距离可达305米,在封闭性区域,通讯距离为76米到122米,方便与现有的有线以太网络整合,组网的成本更低。

  根据无线网卡使用的标准不同,WIFI的速度也有所不同。其中IEEE802.11b最高为11Mbps(部分厂商在设备配套的情况下可以达到22Mbps),IEEE802.11a为54Mbps、IEEE802.11g也是54Mbps。




WLAN和Wi-Fi(WiFi)区别?
引用 Wlan是无线网络的缩写。又叫做无线局域网。同理无线城域网叫做Wwan.

WIFI是无线网络中的一个标准,比如说那些IEEE 802.11a、b、g之类的都属于WIFI这个标准。同类标准还有WIMAX。



iPhone 使用的Wi-Fi(WiFi)标准是?
引用
我们通过官方数据了解到iPhone的Wi-Fi 是 IEEE (802.11b/g) 双频

可以使用IEEE 802.1b或者 IEEE 802.1g


现在主流的WIFI种类

引用 一 .802.11b 速率11M 频率2.4G HZ
二 .802.11a 速率54M 频率5G HZ
三 .802.11g 速率54M和11M,能兼容802.11b和802.11A,频率回复到2.4GHZ,在兼容802.11A时还是使用的5G HZ


详细请看下面:




什么是IEEE (802.XX)或其它?
引用

因为IEEE的标准和频段太多。我们只讲最常用的,和iPhone 有关的。还有和购买设备有关的!
请只看标红介绍。其它可以跳过,当然多了解也可以。


IEEE 802.11

1990年IEEE 802标准化委员会成立IEEE 802.11无线局域网标准工作组。该标准定义物理层和媒体访问控制(MAC)规范。物理层定义了数据传输的信号特征和调制,工作在2.4000~2.4835GHz频段。IEEE 802.11是IEEE最初制定的一个无线局域网标准,主要用于难于布线的环境或移动环境中计算机的无线接入,由于传输速率最高只能达到2Mbps,所以,业务主要被用于数据的存取。

-----------------------------------------------------------------------------------------------------------------------------------------------

IEEE 802.11a

1999年,IEEE 802.11a标准制定完成,该标准规定无线局域网工作频段在5.15~5.825GHz,数据传输速率达到54Mbps/72Mbps(Turbo), 传输距离控制在10~100米。802.11a采用正交频分复用(OFDM)的独特扩频技术;可提供25Mbps的无线ATM接口和10Mbps的以太网无线帧结构接口,以及TDD/TDMA的空中接口;支持语音、数据、图像业务;一个扇区可接入多个用户,每个用户可带多个用户终端。

-----------------------------------------------------------------------------------------------------------------------------------------------

IEEE 802.11b

1999年9月IEEE 802.11b被正式批准,该标准规定无线局域网工作频段在2.4~2.4835GHz,数据传输速率达到11Mbps。该标准是对IEEE 802.11的一个补充,采用点对点模式和基本模式两种运作模式,在数据传输速率方面可以根据实际情况在11Mbps、5.5Mbps、2Mbps、1Mbps的不同速率间自动切换,而且在2Mbps、1Mbps速率时与802.11兼容。802.11b使用直接序列(Direct Sequence)DSSS作为协议。802.11b和工作在5GHz频率上的802.11a标准不兼容。由于价格低廉,802.11b产品已经被广泛地投入市场,并在许多实际工作场所运行。

-----------------------------------------------------------------------------------------------------------------------------------------------

IEEE 802.11e/f/h

IEEE 802.11e标准对无线局域网MAC层协议提出改进,以支持多媒体传输,以支持所有无线局域网无线广播接口的服务质量保证QoS机制。 IEEE 802.11f,定义访问节点之间的通信,支持IEEE 802.11的接入点互操作协议(IAPP)。 IEEE 802.11h用于802.11a的频谱管理技术。

-----------------------------------------------------------------------------------------------------------------------------------------------

IEEE 802.11g

IEEE的802.11g标准是对流行的802.11b(即Wi-Fi标准)的提速(速度从802.11b的11Mb/s提高到54Mb/s)。802.11g接入点支持802.11b和802.11g客户设备。同样,采用802.11g网卡的笔记本电脑也能访问现有的802.11b接入点和新的802.11g接入点。 不过,基于802.11g标准的产品目前还不多见。如果你需要高速度,已经推出的802.11a产品可以提供54Mb/s的最高速度。802.11a的主要缺点是不能和802.11b设备互操作,而且与802.11b相比,802.11a网卡贵50%,接入点贵35%。


-----------------------------------------------------------------------------------------------------------------------------------------------

IEEE 802.11i


IEEE 802.11i标准是结合IEEE 802.1x中的用户端口身份验证和设备验证,对无线局域网 MAC层进行修改与整合,定义了严格的加密格式和鉴权机制,以改善无线局域网的安全性。IEEE 802.11i新修订标准主要包括两项内容:“Wi-Fi保护访问”(WPA)技术和“强健安全网络”。Wi-Fi联盟计划采用 802.11i标准作为WPA的第二个版本,并于2004年初开始实行。


参考资料
IEEE 802.16

该标准主要应用于宽带无线接入方面。802.16工作组的目标是开发固定宽带无线接入系统的标准,这些标准主要解决最后一英里本地环路问题。802.16不同于802.11a的地方在于它为了提供一个支持真正无线网络迂回的标准,从一开始就提出了有关声音、视频、数据的服务质量问题。
IEEE 802.16a

为了给本地无线环路WLL提供一个标准,IEEE 802委员会于1999年成立了802.16工作组来专门开发宽带无线标准。 IEEE 802.16负责对无线本地环路的无线接口及其相关功能制定标准,它由三个小工作组组成,每个小工作组分别负责不同的方面:IEEE 802.16.1负责制定频率为10G到60G赫兹的无线接口标准;IEEE 802.16.2负责制定宽带无线接入系统共存方面的标准;IEEE 802.16.3负责制定频率范围在2G到10G赫兹之间获得频率使用许可应用的无线接口标准。 IEEE于2003年1月29日通过了支持无线城域网(WMAN)的802.16a标准规范书,其频率范围介于2~11GHz之间。 802.16a标准规范明确定义了三种无线数据传输方式:第一种是单载波存取,这是为特殊需求的网络所保留的部分;第二种是经由256个载波的OFDM(正交频分复用)存取,专门提供给大部分的应用程序使用;最后一种是使用2048个载波的特殊OFDMA标准,使用于搭配选择性的多点传送应用程序、阶梯状网络的进阶多路传输技术。




总结

802.11b和802.11a的提出是WLAN发展的一个里程碑,它们分别为2.4GHz和5GHz频段做定义,802.11b物理层最大数据率为11Mbps,而802.11a更可达到惊人的54Mbps,这样的速率对于无线网络而言无疑是相当吸引的。虽然802.11a具有明显的速率优势,但成本问题成为制约其发展的绊脚石,因此目前在市场上占主导地位的却是价格更低,技术更成熟的802.11b。





无线标准 802.11b 802.11a 802.11g 工作频段 2.4GHz 5GHz 2.4GHz 最大数据率 11Mbps 54Mbps 54Mbps 调制技术 DSSS/CCK OFDM OFDM
覆盖范围 较大 较大 较小
802.11g是802.11b的后继者,其同样使用2.4GHz频段,802.11b使用了DSSS(直接序列扩频)或CCK(补码键控调制),而802.11g则使用和802.11a相同的OFDM(正交频分复用调制)技术,使其传输速率是b的5倍,也就是54Mbps。

802.11g和802.11b两种标准可以相互兼容使用,但在使用时仍需注意,802.11g的设备在802.11b的网络环境下使用只能使用802.11b标准,其数据数率只能达到11Mbps。

802.11g关键技术讲解和协议性能分析
 
    摘 要:全面介绍了IEEE802.11g标准的WLAN,详细讲述了IEEE802.11g草案标准的概念、特点、构件及体系结构、发展前景等,并探讨了实现IEEE802.11g WLAN所需的几项关键技术,同时分析了IEEE802.11g标准的网络性能。其关键技术包括直序列扩频调制技术及补码键控技术,包二进制卷积,正交频分复用技术等。有关IEEE802.11g的兼容性、同频共存性、自身的OFDM问题分析将成为研究的热点。

    关键词:无线局域网 IEEE802.11 a,b,gDSSS OFDM CCK PBCC RTS/CTS

    Abstract: This thesis gave overall introduction to IEEE802.11g including the concept feature components and structure. The thesis also discussed several techniques of IEEE802.11 WLAN and analyzed the network features. The author thought that compatibility of IEEE802.11 and OFDM would be the focuses in future.

    Keywords: WLAN IEEE802.11 a,b,gDSSS OFDM CCK PBCC RTS/CTS

  IEEE802.11工作组近年来开始定义新的物理层标准IEEE802.11g。与以前的IEEE802.11协议标准相比,IEEE802.11g草案有以下两个特点:在2.4 GHz频段使用正交频分复用(OFDM)调制技术,使数据传输速率提高到20 Mbit/s以上;能够与IEEE802.11b的Wi-Fi系统互联互通,可共存于同一AP的网络里,从而保障了后向兼容性。这样原有的WLAN系统可以平滑地向高速WLAN过渡,延长了IEEE802.11b产品的使用寿命,降低了用户的投资。2003年7月IEEE802.11工作组批准了IEEE802.11g草案,该标准成为人们关注的新焦点。

    IEEE802.11 WLAN实现的关键技术

  随着WLAN技术的应用日渐广泛,用户对数据传输速率的要求越来越高。但是在室内这个较为复杂的电磁环境中,多经效应、频率选择性衰落和其它干扰源的存在使得无线信道中高速数据传输的实现比有线信道困难,因此WLAN需要采用合适的调制技术。

  IEEE802.11 WLAN是一种能支持较高数据传输速率(1~54 Mbit/s),采用微蜂窝、微微蜂窝结构,自主管理的计算机局域网络。其关键技术大致有3种,直序列扩频调制技术(DSSS: Direct Sequence Spread Spectrum)及补码键控(CCK:Complementary Code Keying)技术、包二进制卷积(PBCC:Packet Binary Convolutional Code)和正交频分复用技术OFDM:Orthogonal Frequency Division Mustiplexing。每种技术皆有其特点,目前扩频调制技术正成为主流,而OFDM技术由于其优越的传输性能成为人们关注的新焦点。

    1.DSSS调制技术

  基于DSSS的调制技术有3种。最初IEEE802.11标准制定在1 Mbit/s数据速率下采用差分二相相移键控(DBPSK: Differential Binary Phase Shift Keying)。如果要提供2 Mbit/s的数据速率,可采用差分正交相移键控(DQPSK: Differential Quadrature Phase Shift Keying),这种方法每次处理两个比特码元,成为双比特。第三种是基于CCK的QPSK,是IEEE802.11b标准采用的基本数据调制方式。它采用了补码序列与直序列扩频技术,是一种单载波调制技术,通过相移键控(PSK)方式传输数据,传输速率分为1,2,5.5和11 Mbit/s。CCK通过与接收端的Pake接收机配合使用,能够在高效率传输数据的同时有效克服多径效应。IEEE802.11b通过使用CCK调制技术来提高数据传输速率,最高可达11 Mbit/s。但是当传输速率超过11 Mbit/s,CCK为了对抗多径干扰,需要更复杂的均衡及调制,实现起来非常困难。因此,IEEE802.11工作组为了推动WLAN的发展,又引入了新的调制技术。

    2.PBCC调制技术

  PBCC调制技术是由德州仪器(TI)公司提出的,已作为IEEE802.11g的可选项被采纳。PBCC也是单载波调制,但与CCK不同,它采用了更多复杂的信号星座图。PBCC采用8PSK,而CCK使用BPSK/QPSK;另外PBCC使用了卷积码,而CCK使用区块码。因此,它们的解调过程是十分不同的。PBCC可以完成更高速率的数据传输,其传输速率为11,22,33Mbit/s。

    3.OFDM技术

  OFDM技术其实是多载波调制(MCM: Multi-Carrier Modulation)的一种。其主要思想是:将信道分成许多正交子信道,在每个子信道上进行窄带调制和传输,这样减少了子信道之间的相互干扰。每个子信道上的信号带宽小于信道的相关带宽,因此每个子信道上的频率选择性衰落是平坦的,大大消除了符号间干扰。

  由于在OFDM系统中各个子信道的载波相互正交,于是它们的频谱是相互重叠的,这样不但减少了子载波间的相互干扰,同时还提高了频谱利用率。在各个子信道中的这种正交调制和解调可以采用反向快速傅里叶变换(IFFT)和快速傅里叶变换(FFT)方法来实现,随着大规模集成电路技术与DSP技术的发展,IFFT和FFT都是非常容易实现的。FFT的引入,大大降低了OFDM实现的复杂性,提升了系统的性能。

  无线数据业务一般都存在非对称性,即下行链路中传输的数据量要远远大于上行链路中的数据传输量。因此无论从用户高速数据传输业务的需求,还是从无线通信自身来考虑,都希望物理层支持非对称高速数据传输,而OFDM很容易通过使用不同数量的子信道来实现上行和下行链路中不同的传输速率。

  由于无线信道存在频率选择性,所有的子信道不会同时处于比较深的衰落情况中,因此可以通过动态比特分配以及动态子信道分配的方法,充分利用信噪比高的子信道,从而提升系统性能。由于窄带干扰只能影响一小部分子载波,因此OFDM系统在某种程度上能抵抗这种干扰。

  OFDM技术有非常广阔的发展前景,已成为第四代移动通信的核心技术。IEEE802.11a/g标准为了支持高速数据传输都采用了OFDM调制技术。目前,OFDM结合时空编码、分集、干扰〔包括码间干扰(ISI)和信道间干扰(ICI)〕抑制以及智能天线技术,最大程度提高了物理层的可靠性。如再结合自适应调制、自适应编码以及动态子载波分配、动态比特分配算法等技术,可以使其性能得到进一步优化。

    4.IEEE802.11g协议帧结构及其技术细节

  从网络逻辑结构上来看,IEEE802.11只定义了物理层及MAC子层。MAC层提供对共享无线介质的竞争使用和无竞争使用,具有无线介质访问、网络连接、数据验证和保密等功能。

物理层为数据链路层提供物理连接,实现比特流的透明传输,所传数据单位为比特。物理层定义了通信设备与接口硬件的机械、电气功能和过程的特性,用以建立、维持和释放物理连接。  物理层由三部分组成:物理层管理层、物理层会聚协议(PLCP)和物理介质依赖子层(PMD)。

  IEEE802.11g的物理帧结构分为前导信号(Preamble)、信头Header和负载Payload。Preamble主要用于确定移动台和接入点之间何时发送和接收数据,传输进行时告知其它移动台以免冲突,同时传送同步信号及帧间隔。Preamble完成,接收方才开始接收数据。Header在Preamble之后?用来传输一些重要的数据比如负载长度、传输速率、服务等信息。由于数据率及要传送字节的数量不同,Payload的包长变化很大,可以十分短也可以十分长。

  在一帧信号的传输过程中,Preamble和Header所占的传输时间越多,Payload用的传输时间就越少,传输的效率越低。

  综合上述3种调制技术的特点,IEEE802.11g采用了OFDM等关键技术来保障其优越的性能,分别对Preamble,Header,Payload进行调制,这种帧结构称为OFDM/OFDM方式。

  另外,IEEE802.11g草案标准规定了可选项与必选项,为了保障与IEEE802.11b兼容也可采用CCK/OFDM和CCK/PBCC的可选调制方式。因此,OFDM调制为必选项保障传输速率达到54Mbit/s;采用CCK调制作为必选保障后向兼容性;CCK/PBCC与CCK/OFDM作为可选项。IEEE802.11g的帧结构比较见表1。

  (1)OFDM/OFDM

  Preamble,Header和Payload都使用OFDM进行调制传输,其传输速率可达54 Mbit/s。OFDM的一个好特点是它有短的Preamble,CCK调制信号的帧头是72μs,而OFDM调制信号的帧头仅为16μs。帧头是一个信号的重要组成部分,帧头占有时间的减少,提高了信号传送数据的能力。OFDM允许较短的Header给更多的时间用于传输数据,具有较高的传输效率。因此,对于11 Mbit/s的传输速率,CCK调制是一个好的选择,但要继续提升速率必须使用OFDM调制技术。它的最高传输速率可达54Mbit/s。IEEE802.11g协议中的OFDM?OFDM方式也可以和Wi-Fi共存,不过它需使用RTS/CTS协议来解决冲突问题。

  (2)CCK/OFDM

  它是一种混合调制方式,是IEEE802.11g的可选项。其Header和Preamble用CCK调制方式传输,OFDM技术传送负载。由于OFDM技术和CCK技术是分离的,因此在Preamble和Payload之间要有CCK和OFDM的转换。

  IEEE802.11g用CCK/OFDM技术来保障与IEEE802.11b共存。IEEE802.11b不能解调OFDM格式的数据,所以难免会发生数据传输冲突,IEEE802.11g使用CCK技术传输Header和Preamble就可以使IEEE802.11b兼容,使其可以接收IEEE802.11g的Header从而避免冲突。这样保障了与IEEE802.11b Wi-Fi设备的后向兼容性,但由于Preamble/Header使用CCK调制,增大了开销,传输速率比OFDM?OFDM方式的有所下降。

  (3)CCK/PBCC

  CCK/PBCC和CCK/OFDM一样,PBCC也是混合波形,包头使用CCK调制而负载使用PBCC调制方式,这样它可以工作于高速率上并与IEEE802.11b兼容。PBCC调制技术最高数据传输速率是33 Mbit/s,比OFDM或CCK/OFDM的传送速率低。


 
   IEEE802.11g的性能分析

  尚未正式成为标准的IEEE802.11g草案由于其不同的特点,成为人们关注的焦点。IEEE802.11g与IEEE802.11b的兼容性,与同频设备的共存能力及OFDM技术自身的问题将成为研究热点。

    1.IEEE802.11g的兼容性

      IEEE802.11g兼容性指的是IEEE802.11g设备能和IEEE802.11b设备在同一个AP节点网络里互联互通。IEEE802.11g的一个最大特点就是要保障与IEEE802.11b Wi-Fi系统兼容。IEEE802.11g可以接收OFDM和CCK数据,但传统的Wi-Fi系统只能接收CCK信息,这就产生了一个问题,即在两者共存的环境中如何解决由于IEEE802.11b不能解调OFDM格式信息帧头所带来的冲突问题。而为了解决上述问题,IEEE802.11g采用了RTS/CTS技术。

  最初,IEEE802.11引入RTS/CTS机制是为了解决隐蔽站问题,即发送站检测不到另一个站在发送数据,因而在接收站发生碰撞的情况。

  IEEE802.11b与IEEE802.11g混合工作的情况与隐蔽站问题非常相似,IEEE802.11b设备无法接收OFDM格式的IEEE802.11g的信息帧头,因此可以采用RTS/CTS机制来解决。在IEEE802.11g和IEEE802.11b混合工作的环境中(即在同一AP服务区中既有IEEE802.11g设备也有IEEE802.11b设备),每一工作节点在传输数据信息前,必须发送一个RTS(Ready to send)帧给AP,从AP返回一个CTS(Clear to send)帧,就开始传送数据。工作台发送RTS到AP节点返回CTS信号,这样所有的工作台都能收到信号,从而避免了混合站点间的碰撞,解决了两者的兼容问题(RTS和CTS信号都采用CCK信号)。RTS/CTS机制也带来了系统的额外开销,因而数据速率率比只使用OFDM的IEEE802.11a系统低,但对于向下兼容并将要被取代的IEEE802.11b系统来说,数据速率又有很大的提高,因此折衷来看IEEE802.11g还是具有很大的优势。对于现在的IEEE802.11g系统,每一个AP监视它旁边的移动设备,当没有IEEE802.11b的设备时,系统会自动取消RTS/CTS机制,相应地增加了系统吞吐量。当未来的IEEE802.11g系统,完全替代IEEE802.11b产品,只使用OFDM调制技术时,与IEEE802.11a系统相比就具备优势了。

    2.同频共存性

  同频共存性指工作在同一频段的无线设备可以互不干扰地进行各自的通信。目前,2.4 GHz ISM频段日益拥挤,越来越多的无线系统选择工作在此频段,例如Wi-Fi系统、蓝牙、无绳电话、微波炉等。这些系统间存在的干扰问题会严重影响系统的通信性能。因此使用OFDM技术的IEEE802.11g设备也要解决同频干扰问题,提高系统间的共存性,以增强系统性能。

    3.OFDM问题分析

  IEEE802.11g首次在2.4 GHz频段使用OFDM作为其关键技术来提高系统的传输速率, OFDM技术结合了多载波和频移键控调制,与单载波系统相比存在一些问题有待解决。因此,OFDM本身的特点会影响IEEE802.11g的性能表现。

 

  (1)易受频率偏移的影响

  由于子信道的频率相互覆盖,这就对它们之间的正交性提出了严格的要求。然而由于无线锡闹存在时变性,在传输过程中会出现无线信号的频率偏移,例如多普勒频移,或者由于发射机载波频率与接受机本地振荡器之间存在频率偏差,都会使得OFDM系统子载波之间的正交性遭到破坏,从而导致子信道间信号的相互干扰(ICI),这种频偏敏感性是OFDM系统的主要缺点。

  (2)存在较高的峰值平均功率比

  与单载波相比,由于多载波调制系统的输出是多个子信道信号的叠加,因此如果多个信号的相位一致时,所得到的叠加信号的瞬间功率会远大于信号的平均功率,导致出现较大的峰值平均功率比(PAR)。这样就对发射机内放大器的线性提出了很高的要求,如果放大器的动态范围不能满足信号的变化,则会为信号带来畸变,使叠加信号的频谱发生变化,从而导致各个子信道信号之间的正交性遭到破坏,产生相互干扰,使系统性能恶化。目前,IceFyre公司正在开发一种低PAR的OFDM芯片,准备在IEEE802.11g系统中使用。另外,2.4 GHz频段的OFDM技术可以保证低PAR且功耗较低,这都将有利于IEEE802.11g系统的推广和应用。

 

    总 结

  IEEE 802. 11g有很多优势。首先是短期优势,即能与IEEE802.11b产品兼容,使WLAN向高速平滑过渡,延长了IEEE802.11b产品的使用寿命,减少了用户的投资;其次是长期优势,今后WLAN的产品可以使用双频多模方式,即在2.4 GHz和5 GHz频段同时支持IEEE802.11b,IEEE802.11a和IEEE802.11g物理层标准,在两个频段上都使用OFDM调制技术,提高数据传输速率。综上所述,IEEE802.11g是一种具有巨大发展潜力的WLAN标准,它必将以高传输速率和灵活组网特性发挥重要作用。

 

韩旭东 山东大学信息工程学院 硕士研究生

Han Xudong Postgraduate Communication School of Shandong University

张春业 山东大学信息工程学院副教授

Zhang Chunye Associate Professor Communication School of Shandong University

曹建海 山东大学博士研究生

Cao Jianhai Doctor Candidate Shandong University