读心神探20集全 下载:内存知识详解

来源:百度文库 编辑:中财网 时间:2024/05/03 06:27:10
1、适用类型

  根据内存条所应用的主机不同,内存产品也各自不同的特点。台式机内存是 DIY 市场内最为普遍的内存,价格也相对便宜。笔记本内存则对尺寸、稳定性、散热性方面有一定的要求,价格要高于台式机内存。而应用于服务器的内存,则对稳定性以及内存纠错功能要求严格,同样稳定性也是着重强调的。

 
                      图1 台式机内存

  笔记本内存,就是应用于笔记本电脑的内存产品。笔记本内存只是使用的环境与台式机内存不同,在工作原理方面,并没有什么区别。只是因为笔记本电脑对内存的稳定性、体积、散热性方面的需求,笔记本内存在这几方面要优于台式机内存,价格方面也要高于台式机内存。

 
                      图2 笔记本内存

  笔记本诞生于台式机的 486 年代,在那个时代的笔记本电脑,所采用的内存各不相同,各种品牌的机型,使用的内存千奇百怪,甚至同一机型的不同批次也有不同的内存,规格极其复杂,有的机器甚至使用 PCMICA 闪存卡来做内存。进入到台式机的 586 时代,笔记本厂商开始推广 72 针的 SO DIMM 标准笔记本内存,而市场上还同时存在着多种规格的笔记本内存,诸如:72 针 5 伏的 FPM;72 针 5 伏的 EDO;72 针 3.3 伏的 FPM;72 针 3.3 伏的 EDO。此几种类型的笔记本内存都已成为“古董”级的宝贝,早已在市场内消失了。在进入到“奔腾”时代,144 针的 3.3 伏的 EDO 是标准笔记本内存。在往后,随着台式机内存中 SDRAM 的普及,笔记本内存也出现了 144 针的 SDRAM。现在,DDR 的笔记本内存也在市面中较为普遍了,而在一些轻薄笔记本内,还有些机型使用与普通机型不同的 Micro DIMM 接口内存。

  对于多数的笔记本电脑,都并没有配备单独的显存,而是采用内存共享的形式,内存要同时负担内存和显存的存储作用。因此,内存对于笔记本电脑性能的影响很大。
 
    
                     图3 服务器内存

  服务器是企业信息系统的核心,因此对内存的可靠性非常敏感。服务器上运行着企业的关键业务,内存错误,可能造成服务器错误并使数据永久丢失。因此,服务器内存在可靠性方面的要求很高,所以服务器内存大多都带有 Buffer(缓存器)、Register(寄存器)、ECC(错误纠正代码),以保证把错误发生的可能性降到最低。服务器内存具有普通 PC 内存所不具备的高性能、高兼容性和高可靠性。

2、主频

  内存主频和 CPU 主频一样,习惯上被用来表示内存的速度,它代表着该内存所能达到的最高工作频率。内存主频是以 MHz(兆赫)为单位来计量的。内存主频越高,在一定程度上代表着内存所能达到的速度越快。内存主频决定着该内存最高能在什么样的频率正常工作。

  目前,市面上已推出的内存产品中,最高能达到 560MHz 的主频,而较为主流的是 333MHz 和 400MHz 的 DDR 内存。

  大家知道,计算机系统的时钟速度是以频率来衡量的。晶体振荡器控制着时钟速度,在石英晶片上加上电压,其就以正弦波的形式震动起来,这一震动可以通过晶片的形变和大小记录下来。晶体的震动以正弦调和变化的电流形式表现出来,这一变化的电流就是时钟信号。而内存本身并不具备晶体振荡器,因此,内存工作时的时钟信号,是由主板芯片组的北桥或直接由主板的时钟发生器提供的。也就是说,内存无法决定自身的工作频率,其实际工作频率是由主板来决定的。

  一般情况下,内存的工作频率是和主板的外频相一致的。通过主板调节 CPU 的外频,也就调整了内存的实际工作频率。

  内存工作时,有两种工作模式:

  一种是同步工作模式。此模式下,内存的实际工作频率与 CPU 外频一致,这是大部分主板所采用的默认内存工作模式。

  另外一种是异步工作模式。这样,允许内存的工作频率与 CPU 外频可存在一定差异。它可以让内存工作在高出或低于系统总线速度 33MHz,又或者让内存和外频以 3:4、4:5 等特定比例的频率上。利用异步工作模式技术,就可以避免以往超频而导致的内存瓶颈问题。

  举个例子:一块 845E 的主板,最大只能支持 DDR266 内存,其主频是 266MHz,这是 DDR 内存的等效频率,其实际工作频率是 133MHz。在正常情况下(不进行超频),该主板上内存工作频率最高可以设置到 DDR266 的模式。但如果主板支持内存异步功能,那么就可以采用内存、外频频率以 5:4 的比例模式下工作。这样,内存的工作频率就可以达到 166MHz,此时主板就可以支持 DDR333(等效频率 333MHz,实际频率 166MHz)了。

  目前的主板芯片组,几乎都支持内存异步。英特尔公司从 810 系列,到目前较新的 875 系列都支持,而威盛公司则从 693 芯片组以后,全部都提供了此功能。

3、传输类型

  传输类型,是指内存所采用的内存类型。不同类型的内存,传输类型各有差异,在传输率、工作频率、工作方式、工作电压等方面,都有不同。目前,市场中主要有的内存类型有 SDRAM、DDR SDRAM 和 RDRAM 三种。其中,DDR SDRAM 内存占据了市场的主流,而 SDRAM 内存规格已不再发展,处于被淘汰的行列。RDRAM 则始终未成为市场的主流,只有部分芯片组支持,而这些芯片组也逐渐退出了市场,RDRAM 前景并不被看好。

  1) SDRAM

  SDRAM,即 Synchronous DRAM(同步动态随机存储器),曾经是 PC 电脑上最为广泛应用的一种内存类型,即便在今天,SDRAM 仍旧还在市场占有一席之地。既然是“同步动态随机存储器”,那就代表着它的工作速度是与系统总线速度同步的。

  SDRAM 内存又分为 PC66、PC100、PC133 等不同规格,而规格后面的数字,就代表着该内存最大所能正常工作的系统总线速度,如 PC100,那就说明此内存可以在系统总线为 100MHz 的电脑中同步工作。

  与系统总线速度同步,也就是与系统时钟同步,这样就避免了不必要的等待周期,减少数据存储时间。同步还使存储控制器知道在哪一个时钟脉冲期由数据请求使用,因此数据可在脉冲上升期便开始传输。SDRAM 采用 3.3 伏工作电压,168Pin 的 DIMM 接口,带宽为 64 位。SDRAM 不仅应用在内存上,在显存上也较为常见。

  2) DDR

  严格的说,DDR 应该叫 DDR SDRAM,人们习惯称为 DDR。部分初学者也常看到 DDR SDRAM,就认为是 SDRAM。DDR SDRAM 是 Double Data Rate SDRAM 的缩写,是双倍速率同步动态随机存储器的意思。

  DDR 内存是在 SDRAM 内存的基础上发展而来的,仍然沿用 SDRAM 生产体系。因此,对于内存厂商而言,只需对制造普通 SDRAM 的设备稍加改进,即可实现 DDR 内存的生产,可有效的降低成本。

  SDRAM 在一个时钟周期内只传输一次数据,它是在时钟的上升期进行数据传输;而 DDR 内存则是一个时钟周期内传输两次数据,它能够在时钟的上升期和下降期各传输一次数据。因此,称为双倍速率同步动态随机存储器。DDR 内存可以在与 SDRAM 相同的总线频率下,达到更高的数据传输率。

  与 SDRAM 相比,DDR 运用了更先进的同步电路,使指定地址、数据输送和输出的主要步骤,既独立执行,又保持与 CPU 完全同步。DDR 使用了 DLL(Delay Locked Loop,延时锁定回路提供一个数据滤波信号)技术,当数据有效时,存储控制器可使用这个数据滤波信号来精确定位数据,每 16 次输出一次,并重新同步来自不同存储器模块的数据。DDR 本质上不需要提高时钟频率,就能加倍提高 SDRAM 的速度,它允许在时钟脉冲的上升沿和下降沿读出数据,因而其速度是标准 SDRA 的两倍。

  从外形体积上看,DDR 与 SDRAM 相比差别并不大。他们具有同样的尺寸和同样的针脚距离。但 DDR 为 184 针脚,比 SDRAM 多出了 16 个针脚,主要包含了新的控制、时钟、电源和接地等信号。DDR 内存采用的是支持 2.5V 电压的 SSTL2 标准,而不是 SDRAM 使用的 3.3V 电压的 LVTTL 标准。

  3) RDRAM

  RDRAM(Rambus DRAM)是美国的 RAMBUS 公司开发的一种内存。与 DDR 和 SDRAM 不同,它采用了串行的数据传输模式。在推出时,因为其彻底改变了内存的传输模式,无法保证与原有的制造工艺相兼容,而且内存厂商要生产 RDRAM,还必须要加纳一定专利费用,再加上其本身制造成本,就导致了 RDRAM 从一问世就高昂的价格,让普通用户无法接收。而同时期的 DDR 则能以较低的价格,不错的性能,逐渐成为主流,虽然 RDRAM 曾受到英特尔公司的大力支持,但始终没有成为主流。

  RDRAM 的数据存储位宽是 16 位,远低于 DDR 和 SDRAM 的 64 位。但在频率方面,则远远高于二者,可以达到 400MHz 乃至更高。同样也是在一个时钟周期内传输两次次数据,能够在时钟的上升期和下降期各传输一次数据,内存带宽能达到 1.6Gbyte/s。

  普通的 DRAM 行缓冲器的信息,在写回存储器后便不再保留,而 RDRAM 则具有继续保持这一信息的特性,于是在进行存储器访问时,如行缓冲器中已经有目标数据,则可利用,因而实现了高速访问。另外,其可把数据集中起来,以分组的形式传送。所以,只要最初用 24 个时钟,以后便可每 1 时钟读出 1 个字节。一次访问所能读出的数据长度,可以达到 256 字节。

  4) DDR2

  DDR2(Double Data Rate 2)SDRAM,是由 JEDEC(电子设备工程联合委员会)进行开发的新生代内存技术标准,它与上一代 DDR 内存技术标准最大的不同就是,虽然同是采用了在时钟的上升/下降延同时进行数据传输的基本方式,但 DDR2 内存却拥有两倍于上一代 DDR 内存预读取能力(即:4bit 数据读预取)。换句话说,DDR2 内存每个时钟能够以 4 倍于外部总线的速度读/写数据,并且能够以内部控制总线 4 倍的速度运行。

  此外,由于 DDR2 标准规定所有 DDR2 内存均采用 FBGA 封装形式,而不同于目前广泛应用的 TSOP/TSOP-II 封装形式,FBGA 封装可以提供了更为良好的电气性能与散热性,为 DDR2 内存的稳定工作与未来频率的发展提供了坚实的基础。回想起 DDR 的发展历程,从第一代应用到个人电脑的 DDR200,经过 DDR266、DDR333 到今天的双通道 DDR400 技术,第一代 DDR 的发展也走到了技术的极限,已经很难通过常规办法提高内存的工作速度。随着 Intel 最新处理器技术的发展,前端总线对内存带宽的要求是越来越高,拥有更高更稳定运行频率的 DDR2 内存将是大势所趋。

   


                                图4

  DDR2 与 DDR 的区别:在了解 DDR2 内存诸多新技术前,先让我们看一组 DDR 和 DDR2 技术对比的数据。


   
                                  图5

  1、延迟问题:

  从上表可以看出,在同等核心频率下,DDR2 的实际工作频率是 DDR 的两倍。这得益于 DDR2 内存拥有两倍于标准 DDR 内存的 4BIT 预读取能力。换句话说,虽然 DDR2 和 DDR 一样,都采用了在时钟的上升延和下降延同时进行数据传输的基本方式,但 DDR2 拥有两倍于 DDR 的预读取系统命令数据的能力。也就是说,在同样 100MHz 的工作频率下,DDR 的实际频率为 200MHz,而 DDR2 则可以达到 400MHz。

  这样,也就出现了另一个问题:在同等工作频率的 DDR 和 DDR2 内存中,后者的内存延时要慢于前者。举例来说,DDR 200 和 DDR2-400 具有相同的延迟,而后者具有高一倍的带宽。实际上,DDR2-400 和 DDR 400 具有相同的带宽,它们都是 3.2GB/s,但是 DDR-400 的核心工作频率是 200MHz,而 DDR2-400 的核心工作频率是 100MHz,也就是说 DDR2-400 的延迟要高于 DDR-400。

  2、封装和发热量:

  DDR2 内存技术最大的突破点,其实不在于用户们所认为的两倍于 DDR 的传输能力,而是在采用更低发热量、更低功耗的情况下,DDR2 可以获得更快的频率提升,突破标准 DDR 的 400MHZ 限制。

  DDR 内存通常采用 TSOP 芯片封装形式,这种封装形式可以很好的工作在 200MHz 上。当频率更高时,它过长的管脚就会产生很高的阻抗和寄生电容,这会影响它的稳定性和频率提升的难度。这也就是 DDR 的核心频率很难突破 275MHZ 的原因。而 DDR2 内存均采用 FBGA 封装形式。不同于目前广泛应用的 TSOP 封装形式,FBGA 封装提供了更好的电气性能与散热性,为 DDR2 内存的稳定工作与未来频率的发展提供了良好的保障。

  DDR2 内存采用 1.8V 电压,相对于 DDR 标准的 2.5V,降低了不少,从而提供了明显的更小功耗与更小发热量,这一点的变化是意义重大的。

  3、DDR2 采用的新技术:

  除了以上所说的区别外,DDR2 还引入了三项新的技术,它们是 OCD、ODT 和 Post CAS。

  1) OCD(Off-Chip Driver):也就是所谓的离线驱动调整。DDR II 通过 OCD 可以提高信号的完整性。DDR II 通过调整上拉(pull-up)/下拉(pull-down)的电阻值,使两者电压相等。使用 OCD 通过减少 DQ-DQS 的倾斜,来提高信号的完整性;通过控制电压来提高信号品质。

  2) ODT:ODT 是内建核心的终结电阻器。我们知道使用 DDR SDRAM 的主板上面,为了防止数据线终端反射信号,需要大量的终结电阻。它大大增加了主板的制造成本。实际上,不同的内存模组对终结电路的要求是不一样的,终结电阻的大小,决定了数据线的信号比和反射率。终结电阻小,则数据线信号反射低,但信噪比也较低;终结电阻高,则数据线的信噪比高,但信号反射也会增加。因此,主板上的终结电阻并不能非常好的匹配内存模组,还会在一定程度上影响信号品质。DDR2 可以根据自已的特点,内建合适的终结电阻。这样,可以保证最佳的信号波形。使用 DDR2 不但可以降低主板成本,还得到了最佳的信号品质,这是 DDR 不能比拟的。

  3) Post CAS:它是为了提高 DDR II 内存的利用效率而设定的。在 Post CAS 操作中,CAS 信号(读写/命令)能够被插到 RAS 信号后面的一个时钟周期,CAS 命令可以在附加延迟(Additive Latency)后面保持有效。原来的 tRCD(RAS 到 CAS 和延迟)被 AL(Additive Latency)所取代,AL 可以在 0,1,2,3,4 中进行设置。由于 CAS 信号放在了 RAS 信号后面一个时钟周期,因此,ACT 和 CAS 信号永远也不会产生碰撞冲突。

  总的来说,DDR2 采用了诸多的新技术,改善了 DDR 的诸多不足,虽然它目前有成本高、延迟慢等诸多不足,但相信随着技术的不断提高和完善,这些问题终将得到解决。

4、接口类型

  接口类型,是根据内存条金手指上导电触片的数量来划分的。金手指上的导电触片,也习惯称为针脚数(Pin)。因为不同的内存采用的接口类型各不相同,而每种接口类型所采用的针脚数各不相同。笔记本内存一般采用 144Pin、200Pin 接口;台式机内存则基本使用 168Pin 和 184Pin 接口。对应于内存所采用的不同针脚数,内存插槽类型也各不相同。目前,台式机系统主要有 SIMM、DIMM 和 RIMM 三种类型的内存插槽,而笔记本内存插槽则是在 SIMM 和 DIMM 插槽基础上发展而来,基本原理并没有变化,只是在针脚数上略有改变。

  1、金手指

  金手指(connecting finger)是内存条上与内存插槽之间的连接部件,所有的信号都是通过金手指进行传送的。金手指由众多金黄色的导电触片组成,因其表面镀金而且导电触片排列如手指状,所以称为“金手指”。金手指实际上是在覆铜板上通过特殊工艺再覆上一层金,因为金的抗氧化性极强,而且传导性也很强。不过,因为金昂贵的价格,目前较多的内存都采用镀锡来代替。从上个世纪 90 年代开始,锡材料就开始普及,目前主板、内存和显卡等设备的“金手指”,几乎都是采用的锡材料,只有部分高性能服务器/工作站的配件接触点,才会继续采用镀金的做法,价格自然不菲。


   
                      图6 内存金手指

  内存处理单元的所有数据流、电子流,正是通过金手指与内存插槽的接触与 PC 系统进行交换,是内存的输出输入端口。因此,其制作工艺,对于内存连接显得相当重要。

  2、内存插槽

  最初的计算机系统,通过单独的芯片安装内存,那时内存芯片都采用 DIP(Dual ln-line Package,双列直插式封装)封装,DIP 芯片是通过安装在插在总线插槽里的内存卡与系统连接,此时还没有正式的内存插槽。DIP 芯片有个最大的问题,就在于安装起来很麻烦,而且随着时间的增加,由于系统温度的反复变化,它会逐渐从插槽里偏移出来。随着每日频繁的计算机启动和关闭,芯片不断被加热和冷却,慢慢地芯片会偏离出插槽。最终导致接触不好,产生内存错误。

  早期还有另外一种方法,是把内存芯片直接焊接在主板或扩展卡里,这样有效避免了 DIP 芯片偏离的问题,但无法再对内存容量进行扩展,而且如果一个芯片发生损坏,整个系统都将不能使用,只能重新焊接一个芯片或更换包含坏芯片的主板。此种方法付出的代价较大,也极为不便。

  对于内存存储器,大多数现代的系统,都已采用单列直插内存模块(Single Inline Memory Module,SIMM)或双列直插内存模块(Dual Inline Memory Module,DIMM)来替代单个内存芯片。这些小板卡插入到主板或内存卡上的特殊连接器里。

  3、内存模块

  1) SIMM

  SIMM(Single Inline Memory Module,单列直插内存模块)。内存条通过金手指与主板连接,内存条正反两面都带有金手指。金手指可以在两面提供不同的信号,也可以提供相同的信号。SIMM 就是一种两侧金手指都提供相同信号的内存结构,它多用于早期的 FPM 和 EDD DRAM,最初一次只能传输 8bif 数据,后来逐渐发展出 16bit、32bit 的 SIMM 模组。其中,8bit 和 16bit SIMM 使用 30pin 接口,32bit 的则使用 72pin 接口。在内存发展进入 SDRAM 时代后,SIMM 逐渐被 DIMM 技术取代。

  

下载 (37.58 KB)
2008-5-23 13:52

  
                           图7

  2) DIMM

  DIMM(Dual Inline Memory Module,双列直插内存模块)。与 SIMM 相当类似,不同的只是 DIMM 的金手指两端,不像 SIMM 那样是互通的,它们各自独立传输信号。因此,可以满足更多数据信号的传送需要。同样采用 DIMM,SDRAM 的接口与 DDR 内存的接口也略有不同,SDRAM DIMM 为 168Pin DIMM 结构,金手指每面为 84Pin,金手指上有两个卡口,用来避免插入插槽时,错误将内存反向插入而导致烧毁;DDR DIMM 则采用 184Pin DIMM 结构,金手指每面有 92Pin,金手指上只有一个卡口。卡口数量的不同,是二者最为明显的区别。DDR2 DIMM 为 240pin DIMM 结构,金手指每面有 120Pin,与 DDR DIMM 一样金手指一样,也只有一个卡口,但是卡口的位置与 DDR DIMM 稍微有一些不同。因此,DDR 内存是插不进 DDR2 DIMM 的,同理 DDR2 内存也是插不进 DDR DIMM 的。因此,在一些同时具有 DDR DIMM 和 DDR2 DIMM 的主板上,不会出现将内存插错插槽的问题。

下载 (29.31 KB)
2008-5-23 13:52
   
                          图8

  不同针脚 DIMM 接口对比。为了满足笔记本电脑对内存尺寸的要求,SO-DIMM(Small Outline DIMM Module)也开发了出来,它的尺寸比标准的 DIMM 要小很多,而且引脚数也不相同。同样 SO-DIMM 也根据 SDRAM 和 DDR 内存规格不同而不同。SDRAM 的 SO-DIMM 只有 144pin 引脚,而 DDR 的 SO-DIMM 拥有 200pin 引脚。此外,笔记本内存还有 MicroDIMM 和 Mini Registered DIMM 两种接口。MicroDIMM 接口的 DDR 为 172pin,DDR2 为 214pin;Mini Registered DIMM 接口为 244pin,主要用于 DDR2 内存。

    3) RIMM

  RIMM(Rambus Inline Memory Module)是 Rambus 公司生产的 RDRAM 内存所采用的接口类型。RIMM 内存与 DIMM 的外型尺寸差不多,金手指同样也是双面的。RIMM 有也 184 Pin 的针脚,在金手指的中间部分有两个靠的很近的卡口。RIMM 非 ECC 版有 16 位数据宽度,ECC 版则都是 18 位宽。由于 RDRAM 内存较高的价格,此类内存在 DIY 市场很少见到,RIMM 接口也就难得一见了。

   


                     图12 RDRAM 内存

< type=text/java> < type=text/java src="http://pagead2.googlesyndication.com/pagead/show_ads.js"> <>window.google_render_ad();

5、容量

  内存容量是指该内存条的存储容量,是内存条的关键性参数。内存容量以 MB 作为单位,可以简写为 M。内存的容量一般都是 2 的整次方倍,比如 64MB、128MB、256MB 等。一般而言,内存容量越大,越有利于系统的运行。目前台式机中主流采用的内存容量为 256MB 或 512MB,64MB、128MB 的内存已较少采用。

  系统对内存的识别,是以 Byte(字节)为单位,每个字节由 8 位二进制数组成,即 8bit(比特,也称“位”)。按照计算机的二进制方式,1Byte=8bit;1KB=1024Byte;1MB=1024KB;1GB=1024MB;1TB=1024GB。

  系统中内存的数量,等于插在主板内存插槽上所有内存条容量的总和。内存容量的上限,一般由主板芯片组和内存插槽决定。不同主板芯片组,可以支持的容量不同,比如 Inlel 的 810 和 815 系列芯片组,最高支持 512MB 内存,多余的部分无法识别。目前,多数芯片组可以支持到 2GB 以上的内存。此外,主板内存插槽的数量,也会对内存容量造成限制。比如,使用 128MB 一条的内存,主板由两个内存插槽,最高可以使用 256MB 内存。因此,在选择内存时,要考虑主板内存插槽数量,并且可能需要考虑将来有升级的余地

6、内存电压

  内存正常工作,需要的一定的电压值。不同类型的内存,电压也不同,但各自均有自己的规格,超出其规格,容易造成内存损坏。SDRAM 内存一般工作电压都在 3.3 伏左右,上下浮动额度不超过 0.3 伏;DDR SDRAM 内存一般工作电压都在 2.5 伏左右,上下浮动额度不超过 0.2 伏;而 DDR2 SDRAM 内存的工作电压一般在 1.8V 左右。具体到每种品牌、每种型号的内存,则要看厂家了,但都会遵循 SDRAM 内存 3.3 伏、DDR SDRAM内存 2.5 伏、DDR2 SDRAM 内存 1.8 伏的基本要求,在允许的范围内浮动。

7、颗粒封装

  颗粒封装,其实就是内存芯片所采用的封装技术类型。封装就是将内存芯片包裹起来,以避免芯片与外界接触,防止外界对芯片的损害。空气中的杂质和不良气体,乃至水蒸气,都会腐蚀芯片上的精密电路,进而造成电学性能下降。不同的封装技术,在制造工序和工艺方面差异很大。封装后,对内存芯片自身性能的发挥,也起到至关重要的作用。

  随着光电、微电制造工艺技术的飞速发展,电子产品始终在朝着更小、更轻、更便宜的方向发展、因此,芯片元件的封装形式,也不断得到改进。芯片的封装技术,多种多样,有 DIP、POFP、TSOP、BGA、QFP、CSP 等等,种类不下三十种,经历了从 DIP、TSOP 到 BGA 的发展历程。芯片的封装技术已经历了几代的变革,性能日益先进,芯片面积与封装面积之比越来越接近,适用频率越来越高,耐温性能越来越好,以及引脚数增多,引脚间距减小,重量减小,可靠性提高,使用更加方便。

  1) DIP 封装

  上个世纪的 70 年代,芯片封装基本都采用 DIP(Dual ln-line Package,双列直插式封装)封装,此封装形式在当时具有适合 PCB(印刷电路板)穿孔安装,布线和操作较为方便等特点。DIP 封装的结构形式,多种多样,包括多层陶瓷双列直插式 DIP,单层陶瓷双列直插式 DIP,引线框架式 DIP 等。但 DIP 封装形式的封装效率是很低的,其芯片面积和封装面积之比为 1:1.86。这样,封装产品的面积较大。内存条 PCB 板的面积是固定的,封装面积越大,在内存上安装芯片的数量就越少,内存条容量也就越小。同时,较大的封装面积,对内存频率、传输速率、电器性能的提升都有影响。理想状态下,芯片面积和封装面积之比为 1:1 将是最好的,但这是无法实现的,除非不进行封装。但随着封装技术的发展,这个比值日益接近,现在已经有了 1:1.14 的内存封装技术。

  2) TSOP 封装

  到了上个世纪 80 年代,内存第二代的封装技术 TSOP 出现,得到了业界广泛的认可,时至今日,仍旧是内存封装的主流技术。TSOP 是“Thin Small Outline Package”的缩写,意思是薄型小尺寸封装。TSOP 内存是在芯片的周围做出引脚,采用 SMT 技术(表面安装技术)直接附着在 PCB 板的表面。TSOP 封装外形尺寸时,寄生参数(电流大幅度变化时,引起输出电压扰动)减小,适合高频应用,操作比较方便,可靠性也比较高。同时,TSOP 封装具有成品率高、价格便宜等优点,因此,得到了极为广泛的应用。
下载 (26.54 KB)
2008-5-23 13:54


   
                     图13 TSOP 封装内存

  TSOP 封装方式中,内存芯片是通过芯片引脚焊接在 PCB 板上的,焊点和 PCB 板的接触面积较小,使得芯片向 PCB 传热就相对困难。而且 TSOP 封装方式的内存,在超过 150MHz 后,会产生较大的信号干扰和电磁干扰。

  3) BGA 封装

  20 世纪 90 年代随着技术的进步,芯片集成度不断提高,I/O 引脚数急剧增加,功耗也随之增大,对集成电路封装的要求也更加严格。为了满足发展的需要,BGA 封装开始被应用于生产。BGA 是英文 Ball Grid Array Package 的缩写,即球栅阵列封装。

  采用 BGA 技术封装的内存,可以使内存在体积不变的情况下,内存容量提高两到三倍,BGA 与 TSOP 相比,具有更小的体积,更好的散热性能和电性能。BGA 封装技术,使每平方英寸的存储量有了很大提升,采用 BGA 封装技术的内存产品,在相同容量下,体积只有 TSOP 封装的三分之一。另外,与传统 TSOP 封装方式相比,BGA 封装方式有更加快速和有效的散热途径。

     
                       图14 BGA 封装内存

  BGA 封装的 I/O 端子,以圆形或柱状焊点按阵列形式分布在封装下面,BGA 技术的优点是,I/O 引脚数虽然增加了,但引脚间距并没有减小反而增加了,从而提高了组装成品率;虽然它的功耗增加,但 BGA 能用可控塌陷芯片法焊接,从而可以改善它的电热性能;厚度和重量都较以前的封装技术有所减少;寄生参数减小,信号传输延迟小,使用频率大大提高;组装可用共面焊接,可靠性高。

  说到 BGA 封装,就不能不提 Kingmax 公司的专利 TinyBGA 技术。TinyBGA 英文全称为 Tiny Ball Grid Array(小型球栅阵列封装),属于是 BGA 封装技术的一个分支。是 Kingmax 公司于 1998 年 8 月开发成功的。其芯片面积与封装面积之比,不小于 1:1.14,可以使内存在体积不变的情况下,内存容量提高 2~3 倍,与 TSOP 封装产品相比,其具有更小的体积、更好的散热性能和电性能。
 

8、传输标准

  内存是计算机内部最为关键的部件之一,其有很严格的制造要求。而其中的传输标准,则代表着对内存速度方面的标准。不同类型的内存,无论是 SDRAM、DDR SDRAM,还是 RDRAM 都有不同的规格,每种规格的内存,在速度上是各不相同的。传输标准是内存的规范,只有完全符合该规范,才能说该内存采用了此传输标准。比如说传输标准 PC3200 内存,代表着此内存为工作频率 200MHz,等效频率为 400MHz 的 DDR 内存,也就是常说的 DDR-400。

  传输标准是购买内存的首要选择条件之一,它代表着该内存的速度。目前市场中所有的内存传输标准,有 SDRAM 的 PC100、PC133;还有 DDR SDRAM 的 PC1600、PC2100、PC2700、PC3200、PC3500、PC3700;以及 RDRAM 的 PC600、PC800 和 PC1066 等。

  1、SDRAM 传输标准

  1) PC100

  PC100 是由 JEDEC 和英特尔共同制订的一个 SDRAM 内存条的标准,符合该标准的内存都称为 PC100,其中的 100 代表该内存工作频率可达 100MHz。JEDEC (Joint Electron Device Engineering Council),电子元件工业联合会。JEDEC 是由生产厂商们制定的国际性协议,主要为计算机内存制定。工业标准的内存,通常指的是符合 JEDEC 标准的一组内存。大多数人认为的 PC100 内存,就是该内存能正常工作在前端总线(FSB)100MHz 的系统中。其实 PC100 是一组很严格的规范,它包含有:内存时钟周期,在 100MHZ 外频工作时值为 10ns;存取时间小于 6ns;PCB 必须为六层板;内存上必须有 SPD 等多方面的规定。

  PC100 中,还详细的规定了内存条上电路的各部分线长最大值与最小值;电路线宽与间距的精确规格;保证 6 层 PCB 板制作(分别为:信号层、电源层、信号层、基层、信号层),具备完整的电源层与地线层;具备每层电路板间距离的详细规格;精确符合发送、载入、终止等请求的时间;详细的 EEPROM 编程规格;详细的 SDRAM 组成规格;特殊的标记要求;电磁干扰抑制;可选镀金印刷电路板等等。由此可见,传输标准是一套相当复杂的内存标准,但具体的内存规范定义,我们没有必要去详细了解,只要了解内存符合这个规范,那么它的数据传输能到达多大,它所能提供的性能怎么样那就足够了。

  从性能的角度来说,PC100 的内存在主板设置在 100MHZ 外频,且在主板的 BIOS 选项中 CL 设置为 2,此内存可以稳定的工作。

  2) PC133

  PC133 是威盛公司联合了三星、现代、日立、西门子、Micron 和 NEC 等数家著名 IT 厂商联合推出的内存标准,其中的 133 指的是该内存工作频率可达 133MHz。PC133 SDRAM 的数据传输速率,可以达到 1.06GB/s。

  严格地说,PC133 和 PC100 内存在制造工艺上没有什么太大的不同,区别只是在制造 PC133 内存时多了一道“筛选”工序,把内存颗粒中外频超过 133 MHz 的挑选出来,焊接成高档一些的内存。

  2、DDR 传输标准

  PC1600 如果按照传统习惯传输标准的命名,PC1600(DDR200)应该是 PC200。在当时 DDR 内存正在与 RDRAM 内存进行下一代内存标准之争,此时的 RDRAM 按照频率命名,应该叫 PC600 和 PC800。这样,对于不是很了解的人来说,自然会认为 PC200 远远落后于 PC600,而 JEDEC 基于市场竞争的考虑,将 DDR 内存的命名规范进行了调整。传统习惯是按照内存工作频率来命名,而 DDR 内存则以内存传输速率命名。因此,才有了今天的 PC1600、PC2100、PC2700、PC3200、PC3500 等。

  PC1600 的实际工作频率是 100 MHz,而等效工作频率是 200 MHz,那么,它的数据传输率就为“数据传输率=频率*每次传输的数据位数”,也就是 200MHz*64bit=12800Mb/s,再除以 8 就换算为 MB 为单位,就是 1600MB/s,从而命名为 PC1600。

下载 (31.1 KB)
2008-5-23 13:59


   
                 图17 DDR SDRAM 传输标准

  3、DDR2 传输标准

  DDR2 可以看作是 DDR 技术标准的一种升级和扩展。DDR 的核心频率与时钟频率相等,但数据频率为时钟频率的两倍,也就是说,在一个时钟周期内,必须传输两次数据。而 DDR2 采用“4 bit Prefetch(4 位预取)”机制,核心频率仅为时钟频率的一半,时钟频率再为数据频率的一半。这样,即使核心频率还在 200MHz,DDR2 内存的数据频率也能达到 800MHz,也就是所谓的 DDR2 800。

  目前,已有的标准 DDR2 内存分为 DDR2 400 和 DDR2 533,今后还会有 DDR2 667 和 DDR2 800,其核心频率分别为 100MHz、133MHz、166MHz 和 200MHz,其总线频率(时钟频率)分别为 200MHz、266MHz、333MHz 和 400MHz,等效的数据传输频率分别为 400MHz、533MHz、667MHz 和 800MHz,其对应的内存传输带宽分别为 3.2GB/sec、4.3GB/sec、5.3GB/sec 和 6.4GB/sec,按照其内存传输带宽分别标注为 PC2 3200、PC2 4300、PC2 5300 和 PC2 6400。


   
                                  图18

  4、RDRAM 传输标准

  1) PC600

  RDRAM 仍旧采用习惯的内存频率来命名。PC600 的工作频率为 300 MHz,而其也是时钟上升期和下降期都传输数据,因此其等效频率为 600 MHz,所以命名为 PC600。

  2) PC800

  PC800 的工作频率为 400 MHz,而其也是时钟上升期和下降期都传输数据,因此其等效频率为 800 MHz,所以命名为 PC800。

  3) PC1066

  PC1066 的工作频率为 533 MHz,而其也是时钟上升期和下降期都传输数据,因此其等效频率为 1066 MHz,所以命名为 PC1066。
    
                    图15 TinyBGA 封装内存

  采用 TinyBGA 封装技术的内存产品,在相同容量情况下,体积只有 TSOP 封装的 1/3。TSOP 封装内存的引脚是由芯片四周引出的,而 TinyBGA 则是由芯片中心方向引出。这种方式,有效地缩短了信号的传导距离,信号传输线的长度,仅是传统的 TSOP 技术的 1/4。因此,信号的衰减也随之减少。这样,不仅大幅提升了芯片的抗干扰、抗噪性能,而且提高了电性能。采用 TinyBGA 封装芯片,可抗高达 300MHz 的外频,而采用传统 TSOP 封装技术,最高只可抗 150MHz 的外频。

  TinyBGA 封装的内存,其厚度也更薄(封装高度小于 0.8mm),从金属基板到散热体的有效散热路径,仅有 0.36mm。因此,TinyBGA 内存拥有更高的热传导效率,非常适用于长时间运行的系统,稳定性极佳。

  4) CSP 封装

  CSP(Chip Scale Package),是芯片级封装的意思。CSP 封装是最新一代的内存芯片封装技术,其技术性能又有了新的提升。CSP 封装可以让芯片面积与封装面积之比超过 1:1.14,已经相当接近 1:1 的理想情况,绝对尺寸也仅有 32 平方毫米,约为普通的 BGA 的 1/3,仅仅相当于 TSOP 内存芯片面积的 1/6。与 BGA 封装相比,同等空间下 CSP 封装,可以将存储容量提高三倍。


    
                       图16 CSP 封装内存

  CSP 封装内存不但体积小,同时也更薄,其金属基板到散热体的最有效散热路径,仅有 0.2 毫米,大大提高了内存芯片在长时间运行后的可靠性,线路阻抗显著减小,芯片速度也随之得到大幅度提高。

  CSP 封装内存芯片的中心引脚形式,有效地缩短了信号的传导距离,其衰减随之减少,芯片的抗干扰、抗噪性能也能得到大幅提升,这也使得 CSP 的存取时间比 BGA 改善 15%-20%。在 CSP 的封装方式中,内存颗粒是通过一个个锡球焊接在 PCB 板上,由于焊点和 PCB 板的接触面积较大,所以内存芯片在运行中所产生的热量可以很容易地传导到 PCB 板上并散发出去。CSP 封装可以从背面散热,且热效率良好,CSP 的热阻为 35℃/W,而 TSOP 热阻 40℃/W。

、CL 设置

  内存负责向 CPU 提供运算所需的原始数据,而目前 CPU 运行速度超过内存数据传输速度很多。因此,很多情况下,CPU 都需要等待内存提供数据,这就是常说的“CPU 等待时间”。内存传输速度越慢,CPU 等待时间就会越长,系统整体性能受到的影响就越大。因此,快速的内存,是有效提升 CPU 效率和整机性能的关键之一。

  在实际工作时,无论什么类型的内存,在数据被传输之前,传送方必须花费一定时间去等待传输请求的响应,通俗点说,就是传输前,传输双方必须要进行必要的通信,而这样就会造成传输的一定延迟时间。CL 设置一定程度上反映出了该内存在 CPU 接到读取内存数据的指令后,到正式开始读取数据所需的等待时间。不难看出,同频率的内存,CL 设置低的,更具有速度优势。

  上面只是给大家建立一个基本的 CL 概念。而实际上,内存延迟的基本因素,绝对不止这些。内存延迟时间,有个专门的术语叫“Latency”。要形象的了解延迟,我们不妨把内存当成一个存储着数据的数组,或者一个 EXCEL 表格,要确定每个数据的位置,每个数据都是以行和列编排序号来标示,在确定了行、列序号之后,该数据就唯一了。内存工作时,在要读取或写入某数据,内存控制芯片会先把数据的列地址传送过去,这个 RAS 信号(Row Address Strobe,行地址信号)就被激活,而在转化到行数据前,需要经过几个执行周期,然后接下来 CAS 信号(Column Address Strobe,列地址信号)被激活。在 RAS 信号和 CAS 信号之间的几个执行周期,就是 RAS-to-CAS 延迟时间。在 CAS 信号被执行之后,同样也需要几个执行周期。此执行周期在使用标准 PC133 的 SDRAM 大约是 2—3 个周期;而 DDR RAM 则是 4—5 个周期。在 DDR 中,真正的 CAS 延迟时间则是 2—2.5 个执行周期。RAS-to-CAS 的时间,则视技术而定,大约是 5—7 个周期,这也是延迟的基本因素。

  CL 设置较低的内存,具备更高的优势,这可以从总的延迟时间来表现。内存总的延迟时间有一个计算公式,总延迟时间=系统时钟周期×CL模式数+存取时间(tAC)。首先,来了解一下存取时间(tAC)的概念。tAC 是 Access Time from CLK 的缩写,是指最大 CAS 延迟时的最大数输入时钟,是以纳秒为单位的,与内存时钟周期是完全不同的概念,虽然都是以纳秒为单位。存取时间(tAC)代表着读取、写入的时间,而时钟频率则代表内存的速度。

  举个例子,来计算一下总延迟时间。比如,一条 DDR333 内存,其存取时间为 6ns,其内存时钟周期为 6ns(DDR内存时钟周期=1X2/内存频率,DDR333 内存频率为 333,则可计算出其时钟周期为 6ns)。我们在主板的 BIOS 中,将其 CL 设置为 2.5,则总的延迟时间=6ns X2.5+6ns=21ns。而如果 CL 设置为 2,那么总的延迟时间=6ns X2+6ns=18ns,就减少了 3ns 的时间。

  从总的延迟时间来看,CL 值的大小起到了很关键的作用。所以,对系统要求高和喜欢超频的用户,通常喜欢购买 CL 值较低的内存。目前,各内存颗粒厂商除了从提高内存时钟频率来提高 DDR 的性能之外,已经考虑通过更进一步的降低 CAS 延迟时间,来提高内存性能。不同类型内存的典型 CL 值并不相同。例如,目前典型 DDR 的 CL 值为 2.5 或者 2,而大部分 DDR2 533 的延迟参数都是 4 或者 5,少量高端 DDR2 的 CL 值可以达到 3。

  不过,并不是说 CL 值越低性能就越好,因为其它的因素会影响这个数据。例如,新一代处理器的高速缓存较有效率,这表示处理器比较少地直接从内存读取数据。再者,列的数据会比较常被存取,所以 RAS-to-CAS 的发生几率也大,读取的时间也会增多。最后,有时会发生同时读取大量数据的情形,在这种情形下,相邻的内存数据会一次被读取出来,CAS 延迟时间只会发生一次。

  选择购买内存时,最好选择同样 CL 设置的内存。因为不同速度的内存,混插在系统内,系统会以较慢的速度来运行,也就是当 CL 2.5 和 CL 2 的内存同时插在主机内,系统会自动让两条内存都工作在 CL 2.5 状态,造成资源浪费。

10、ECC 校验

  ECC 内存即纠错内存,简单的说,其具有发现错误,纠正错误的功能,一般多应用在高档台式电脑/服务器及图形工作站上,这将使整个电脑系统在工作时更趋于安全稳定。

  内存是一种电子器件,在其工作过程中难免会出现错误,而对于稳定性要求高的用户来说,内存错误可能会引起致命性的问题。内存错误根据其原因,还可分为硬错误和软错误。硬件错误是由于硬件的损害或缺陷造成的,因此数据总是不正确,此类错误是无法纠正的;软错误是随机出现的,例如在内存附近突然出现电子干扰等因素,都可能造成内存软错误的发生。

  为了能检测和纠正内存软错误,首先出现的是内存“奇偶校验”。内存中最小的单位是比特,也称为“位”,位有只有两种状态,分别以 1 和 0 来标示,每 8 个连续的比特叫做一个字节(byte)。不带奇偶校验的内存,每个字节只有 8 位,如果其某一位存储了错误的值,就会导致其存储的相应数据发生变化,进而导致应用程序发生错误。而奇偶校验就是在每一字节(8 位)之外又增加了一位作为错误检测位。在某字节中存储数据之后,在其 8 个位上存储的数据是固定的,因为位只能有两种状态 1 或 0,假设存储的数据用位标示为 1、1、1、0、0、1、0、1,那么把每个位相加(1+1+1+0+0+1+0+1=5),结果是奇数。对于偶校验,校验位就定义为 1,反之则为 0。对于奇校验,则相反。当 CPU 读取存储的数据时,它会再次把前 8 位中存储的数据相加,计算结果是否与校验位相一致。从而,一定程度上能检测出内存错误。奇偶校验只能检测出错误,而无法对其进行修正,同时,虽然双位同时发生错误的概率相当低,但奇偶校验却无法检测出双位错误。

  ECC(Error Checking and Correcting,错误检查和纠正)内存,它同样也是在数据位上额外的位存储一个用数据加密的代码。当数据被写入内存,相应的 ECC 代码与此同时也被保存下来。当重新读回刚才存储的数据时,保存下来的 ECC 代码就会和读数据时产生的 ECC 代码做比较。如果两个代码不相同,他们则会被解码,以确定数据中的那一位是不正确的。然后这一错误位会被抛弃,内存控制器则会释放出正确的数据。被纠正的数据很少会被放回内存。假如相同的错误数据再次被读出,则纠正过程再次被执行。重写数据会增加处理过程的开销,这样,则会导致系统性能的明显降低。如果是随机事件而非内存的缺点产生的错误,则这一内存地址的错误数据会被再次写入的其他数据所取代。

  使用 ECC 校验的内存,会对系统的性能造成不小的影响。不过,这种纠错对服务器等应用而言,是十分重要的。带 ECC 校验的内存价格,比普通内存要昂贵许多。